
processing
20010302 182

Proceedings

ft,-. :--•;■;

. ;.r.rj\""i.'.'';v;''■ ■':' ""•

'-'-.:

Part III (June 23)

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Faculdade de Engenharia
da Universidade do Porto

2000 June, 21 22 23

REPORT DOCUMENTATION PAGE Form Approved OMB No, 0704-0188

Public reporting burden for this collection of information Is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

12 January 2001

3. REPORT TYPE AND DATES COVERED

Conference Proceedings

4. TITLE AND SUBTITLE

VECPAR - 4th International Meeting on Vector and Parallel Processing

fVH- HI
6. AUTHOR(S)

Conference Committee

5. FUNDING NUMBERS

F61775-00-WF071

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

FEUP-FACULDADE DE ENGENHARIA DA Universidade do Porto
RUA DOS BRAGAS
Porto 4050-123
Portugal

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0200

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CSP 00-5071

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 words)

The Final Proceedings for VECPAR - 4th International Meeting on Vector and Parallel Processing, 21 June 2000 -
23 June 2000, an interdisciplinary conference covering topics in all areas of vector, parallel and distributed
computing applied to a broad range of research disciplines with a focus on engineering. The principal
topics include: Cellular Automata, Computational Fluid Dynamics, Crash and Structural Analysis,
Data Warehousing and Data Mining, Distributed Computing and Operating Systems, Fault Tolerant
Systems, Imaging and Graphics, Interconnection Networks, Languages and Tools, Numerical
Methods, Parallel and Distributed Algorithms, Real-time and Embedded Systems, Reconfigurable
Systems, Linear Algebra Algorithms and Software for Large Scientific Problems, Computer
Organization, Image Analysis and Synthesis, and Nonlinear Problems.

14. SUBJECT TERMS

EOARD, Modelling & Simulation, Parallel Computing, Distributed Computing

15. NUMBER OF PAGES
Three volumes:
1016 pages total

(plus TOC, and front matter)
16. PRICE CODE

N/A
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

VECPAR'2000
4rd International Meeting on

Vector and Parallel Processing

2000, June 21-23

Conference Proceedings
Part III

(Friday, June 23)

FEUP
Faculdade de Engenharia
da Universidade do Porto

Preface

This book is part of a 3-volume set with the written versions of all invited talks, papers and
posters presented at VECPAR'2000 - 4 th International Meeting on Vector and Parallel
Processing.

The Preface and the Table of Contents are identical in all 3 volumes (one for each day of the
conference), numbered in sequence. Papers are grouped according to the session where they
were presented.

The conference programme added up to a total of 6 plenary and 20 parallel sessions, comprising
6 invited talks, 66 papers and 11 posters.

It is our great pleasure to express our gratitude to all people that helped us during the
preparation of this event. The expertise provided by the Scientific Committee was crucial in the
selection of more than 100 abstracts submitted for possible presentation.

Even at the risk of forgetting some people, we would like to express our gratitude to the
following people, whose collaboration went well beyond the call of duty. Fernando Jorge and
Vitor Carvalho, for creation and maintenance of the conference web page; Alice Silva for the
secretarial work; Dr. Jaime Villate for his assistance in organisational matters; and Nuno Sousa
and Alberto Mota, for authoring the procedure for abstract submission via web.

Porto, June 2000 The Organising and Scientific Committee Chairs

VECPAR'2000 was held at Fundacäo Dr. Antonio Cupertino de Miranda, in Porto (Portugal),
from 21 to 23 June, 2000.

VECPAR is a series of conferences, on vector and parallel computing organised by the Faculty
of Engineering of the University of Porto (FEUP) since 1993.

Committees

Organising Committee

A. Augusto de Sousa (Chair)
Jose Couto Marques (Co-chair)
Jose MagaMes Cruz

Local Advisory Committee

Carlos Costa
Raimundo Delgado
Jose Marques dos Santos
Fernando Nunes Ferreira
Li'gia Ribeiro
Jose Silva Matos
Paulo Tavares de Castro
Raul Vidal

Scientific Committee

J. Palma (Chair)
J. Dongarra (Co-chair)
V. Hernandez (Co-chair)

P. Amestoy
T. Barth
A. Campilho
G. Candler
A. Chalmers
B. Chapman
A. Coutinho
J. C. Cunha
F. dAlmeida
M. Dayde
J. Dekeyser
P. Devloo
J. Duarte
I. Duff
D. Falcäo
J. Fortes
S. Gama
M. Giles
L. Giraud
G. Golub
D. Heermann
W. Janke
M. Kamel
M.-T. Kechadi
D. Knight
V. Kumar
R. Lohner
E. Luque
J. Macedo
P. Marquet
P. de Miguel
F. Moura
E. Onate
A. Padilha
R. Pandey
M. Peric
T. Priol
R. Ralha
M. Ruano
D. Ruiz
H. Ruskin
J. G. Silva
F. Tirado
B. Tourancheau
M. Valero
A. van der Steen
J. Vuillemin
J.-S. Wang
P. Watson
P. Welch
E. Zapata

Univ. do Porto, Portugal
Univ. of Tennessee and Oak Ridge National Lab..
Univ. Politecnica de Valencia, Spain

USA

ENSEEIHT-IRIT, Toulouse, France
NASA Ames Research Center, USA
Univ. do Porto, Portugal
Univ. of Minnesota, USA
Univ. of Bristol, England
Univ. of Southampton, England
Univ. Federal do Rio de Janeiro, Brazil
Univ. Nova de Lisboa, Portugal
Univ. do Porto, Portugal
ENSEEIHT-IRIT, Toulouse, France
Univ. des Sciences et Technologies, Lille, France
Univ. Estadual de Campinas (UNICAMP), Brazil
Univ. do Porto, Portugal
Rutherford Appleton Lab., England, and CERFACS, France
Univ. Federal do Rio de Janeiro, Brazil
Purdue Univ., USA
Univ. do Porto, Portugal
Univ. of Oxford, England
CERFACS, France
Stanford Univ., USA
Univ. Heidelberg,Germany
Univ. of Leipzig, Germany
Univ. of Waterloo, Canada
Univ. College Dublin, Ireland
Rutgers-State Univ. of New Jersey, USA
Univ. of Minnesota, USA
George Mason Univ., USA
Univ. Autönoma de Barcelona, Spain
Univ. do Porto, Portugal
Univ. des Sciences et Technologies, Lille, France
Univ. Politecnica de Madrid, Spain
Univ. do Minho, Portugal
Univ. Politecnica de Catalunya, Spain
Univ. do Porto, Portugal
Univ. of Southern Mississipi, USA
Technische Univ. Hamburg-Harrurg, Germany
IRISA/INRIA, France
Univ. do Minho, Portugal
Univ. do Algarve, Portugal
ENSEEIHT-IRIT, Toulouse, France
Dublin City Univ., Ireland
Univ. de Coimbra, Portugal
Univ. Complutense, Spain
Univ. Claude Bernard de Lyon, France
Univ. Politecnica de Catalunya, Spain
Utrecht Univ., The Netherlands
Ecole Normale Superieure, Paris, France
National Univ. of Singapore, Singapore
Univ. of Newscastle, England
Univ. of Kent at Canterbury, England
Univ. de Malaga, Spain

Sponsoring Organisations

The Organising Committee is very grateful to all sponsoring organisations for their support:

FEUP - Faculdade de Engenharia da Universidade do Porto
UP - Universidade do Porto

CMP - Cämara Municipal do Porto
EOARD - European Office of Aerospace Research and Development
FACM - Fundacäo Dr. Antonio Cupertino de Miranda
FCCN - Fundacäo para a Computacäo Cientifica Nacional
FCG - Fundacäo Calouste Gulbenkian
FCT - Fundacäo para a Ciencia e a Tecnologia
FLAD - Fundacäo Luso-Americana para o Desenvolvimento
ICCTI/BC - Inst, de Cooperacäo Cientifica e Tecnolögica Internacional/British Council
INESC Porto - Institute de Engenharia de Sistemas e de Computadores do Porto
OE - Ordern dos Engenheiros
Porto Convention Bureau

ALCATEL
CISCO Systems
COMPAQ
MICROSOFT
NEC European Supercomputer Systems
NORTEL Networks
SIEMENS

PART I (June 21, Wednesday)

Invited Talk
(June 21, Wednesday. Auditorium, 10:50-11:50)

High Performance Computing on the Internet 1
Ian Foster, Argonne National Laboratory and the University of Chicago (USA)

Session 1: Distributed Computing and Operating Systems
June 21. Wednesday (Auditorium, 11:50-12:50)

Implementing and Analysing an Effective Explicit Coscheduling Algorithm on a NOW
Francesc Solana, Francesc Gine, Fermin Molina, Porfidio Hernandez and Emilio Luque
(Spain) 31

An Approximation Algorithm for the Static Task Scheduling on Multiprocessors
Janez Brest, Jaka Jejcic, Aleksander Vreze and Viljem Zumer (Slovenia) 45

A New Buffer Management Scheme for Sequential and Looping Reference Pattern Applications
Jun-Young Cho, Gyeong-Hun Kim, Hong-Kyu Kang and Myong-Soon Park (Korea) 57

Session 2: Languages and Tools
June 21, Wednesday (Room A, 11:50-12:50)

Parallel Architecture for Natural Language Processing
Ricardo Annes (Brazil) 69

A Platform Independent ParallelisingTool Based on Graph Theoretic Models
Oliver Sinnen and Leonel Sousa (Portugal) 81

A Tool for Distributed Software Design in the CORBA Environment
Jan Kwiatkowski, Maciej Przewozny and Jose C. Cunha (Poland) 93

Session 3: Data-warehouse, Education and Genetic Algorithms
June 21, Wednesday (Auditorium, 14:30-15:30)

Parallel Performance of Ensemble Self-Generating Neural Networks
Hirotaka Inoue and Hiroyuki Narihisa (Japan) 105

An Environment to Learn Concurrency
Giuseppina Capretti, Maria Rita Laganä and Laura Ricci (Italy) 119

Dynamic Load Balancing Model: Preliminary Results for a Parallel Pseudo-Search Engine
Indexers/Crawler Mechanisms using MPI and Genetic Programming

Reginald L. Walker (USA) 133

Session 4: Architectures and Distributed Computing
June 21, Wednesday (Room A, 14:30-15:30)

A Novel Collective Communication Scheme on Packet-Switched 2D-mesh Interconnection
MinHwan Ok and Myong-Soon Park (South Korea) 147

Enhancing parallel multimedia servers through new hierarchical disk scheduling algorithms
Javier Fernandez, Felix Garcia and Jesus Carretero (Spain) 159

A Parallel VRML97 Server Based on Active Objects
Thomas Rischbeck and Paul Watson (United Kingdom) 169

Invited Talk
(June 21. Wednesday, Auditorium, 15:30-16:30)

Cellular Automata: Applications 183
Dietrich Stauffer. Institute for Theoretical Physics, Cologne University (Germany)

Session 5: Cellular Automata
June 21. Wednesday (Auditorium. 17:00-18:20)

The Role of Parallel Cellular Programming in Computational Science
Domenico Talia (Italy) 191

A Novel Algorithm for the Numerical Simulation of Collision-free Plasma
David Nunn (UK) 205

Paralleltation of a Density Functional Program for Monte-Carlo Simulation of Large
Molecules

J.M. Pacheco and Jose Luis Martins (Portugal) 217

An Efficient Parallel Algorithm to the Numeric Solution of Schrodinger Equation
Jesus Vigo_Aguiar, Luis M. Quintales and S. Natesan (Spain) 231

Session 6: Linear Algebra
June 21, Wednesday (Room A. 17:00-18:20)

An Efficient Parallel Algorithm for the Symmetric Tridiagonal Eigenvalue Problem
Maria Antönia Forjaz and Rui Ralha (Portugal) 241

Performance of Automatically Tuned Parallel GMRES(m) Method on Distributed Memory
Machines

Hisayasu Kuroda, Takahiro Katagiri and Yasumasa Kanada (Japan) 251

A Methodology for Automatically Tuned Parallel Tri-diagonalization on Distributed Memory
Vector-Parallel Machines

Takahiro Katagiri, Hisayasu and Yasumasa Kanada (Japan) 265

A new Parallel Approach to the Toeplitz Inverse Eigen-problem using Newton-like Methods.
Jesus Peinado and Antonio Vidal (Spain) 279

PARTII (June 22, Thursday)

Session 7: Real-time and Embedded Systems
June 22. Thursday (Auditorium, 9:00-10:20)

Solving the Quadratic 0-1 Problem
G. Schütz, F.M. Pires and A.E. Ruano (Portugal) 293

A Parallel Genetic Algorithm for Static Allocation of Real-time Tasks
Leila Baccouche (Tunisia) 307

Value Prediction as a Cost-effective Solution to Improve Embedded Processor Performance
Silvia Del Pino. Luis Pinuel, Rafael A.Moreno and Francisco Tirado (Spain) 321

Parallel Pole Assignment of Single-Input Systems
Maribel Castillo, Enrique S. Quintana-Orti, Gregorio Quintana-Orti and Vicente
Hernandez (Spain) 335

Session 8: Linear Algebra
June 22. Thursday (Room A. 9:00-10:20)

Non-stationary parallel Newton iterative methods for non-linear problems
Josep Arnal, Violeta Migallön and Jose Penades (Spain) 343

Modified Cholesky Factorisation of Sparse Matrices on Distributed Memory Systems: Fan-in
and Fan-out Algorithms with Reduced Idle Times

Maria J. Martin and Francisco F. Rivera (Spain) 357

An Index Domain for Adaptive Midti-grid Methods
Andreas Schramm (Germany) 371

PARADEIS: An STL Extension for Data Parallel Sparse Matrix Computation
Frank Delaplace and Didier Remy (France) 385

Invited Talk
(June 22, Thursday. Auditorium, 10:50-11:50)

Parallel Branch-and-Boundfor Chemical Engineering Applications: Load Balancing and
Scheduling Issues 463

Chao-Yang Gau and Mark A. Stadtherr, University of Notre Dame (USA)

Posters
The poster session will be held simultaneously with the Industrial session.
(June 22, Thursday. Entrance Hall, 11:50-12:50)

Installation routines for linear algebra libraries on LANs
Domingo Gimenez and Gines Carrillo (Spain) 393

Some Remarks about Functional Equivalence ofFilateral Linear Cellular Arrays and Cellular
Arrays with Arbitrary Unilateral Connection Graph

V. Varshavsky and V. Marakhovsky (Japan) 399

Preliminary Results of the PREORD Project: A Parallel Object Oriented Platform for DMS
Systems

Pedro Silva, J. Tome Saraiva and Alexandre V. Sousa (Portugal) 407

Dynamic Page Aggregation for Nautilus DSM System-A Case Study
Mario Donato Marino and Geraldo Lino de Campos (Brazil) 413

A Parallel Algorithm for the Simulation of Water Quality in Water Supply Networks
J.M Alonso, F. Alvarruiz, D. Guerrero, V. Hernandez, P.A. Ruiz and A.M. Vidal (Spain) 419

A visualisation tool for the performance prediction of iterative methods in HPF
F. F Rivera, J.J. Pombo, T.F. Pena, D.B. Heras, P. Gonzalez, J.C. Cabaleiro and V.
Blanco (Spain) 425

A Methodology for Designing Algorithms to Solve Linear Matrix Equations
Gloria Martinez, German Fabregat and Vicente Hernandez (Spain) 431

A new user-level threads library: dthreads
A. Garcia Dopico, A. Perez amd M. Martinez Santamarta (Spain) 437

Grain Size Optimisation of a Parallel Algorithm for Simulating a Laser Cavity on a
Distributed Memory Multi-computer

Guillermo Gonzälez-Talavän (Spain) 443

Running PVMApplications in the PUNCH Wide Area Network-Computing Environment
Dolors Royo, Nirav H. Kapadia and Jose A.B. Fortes (USA) 449

Simulating 2-D Froths: Fingerprinting the Dynamics
Heather Ruskin and Y. Feng (Ireland) 455

Industrial Session 1
(June 22. Thursday. Auditorium, 11:50-12:50)

NEC European Supercomputer Systems: Vector Computing: Past Present and Future
Christian Lantwin (Manager Marketing)

CISCO Systems: 12016 Terabit System Overview
Graca Carvalho, Consulting Engineer, Advanced Internet Initiatives

Industrial Session 2
(June 22. Thursday. Room A, 11:50-12:50)

NORTEL Networks: High Speed Internet to Enable High Performance Computing
Kurt Bertone, Chief Technology Officer

COMPAQ
Title and speaker to be announced

Session 9: Numerical Methods and Parallel Algorithms
June 22, Thursday (Auditorium, 14:30-15:30)

A Parallel Implementation of an Interior-Point Algorithm for Multicommodity Network Flows
Jordi Castro and Antonio Frangioni (Spain) 491

A Parallel Algorithm for the Simulation of the Dynamic Behaviour of Liquid-Liquid Agitated
Columns

E.F Gomes, L.M. Ribeiro, P.F.R. Regueiras and J.J.C. Cruz-Pinto (Portugal) 505

Performance Analysis and Modelling of Regular Applications on Heterogeneous Workstation
Networks

Andrea Clematis and Angelo Corana (Italy) 519

Session 10: Linear Algebra
June 22, Thursday (Room A, 14:30-15:30)

Parallelization of a Recursive Decoupling Method for Solving Tridiagonal Linear System on
Distributed Memory Computer

M. Amor, F. Arguello, J. Lopez and E. L. Zapata (Spain) 531

Fully vectorized solver for linear recurrence system with constant coefficients
Przemyslaw Stpiczynski and Marcin Paprzycki (Poland) 541

Parallel Solvers for Discrete-Time Periodic Riccati Equations
Rafael Mayo , Enrique S. Quintana-Orti, Enrique Arias and Vicente Hernandez (Spain) 553

Invited Talk
(June 22, Thursday, Auditorium, 15:30-16:30)

Thirty Years of Parallel Image Processing 559
Michael J. B. Duff, University College London (UK)

Session 11: Imaging
June 22, Thursday (Auditorium, 17:00-18:00)

Scheduling of a Hierarchical Radiosity Algorithm on Distributed-Memory Multiprocessor
M. Amor, E.J. Padrön, J. Tourino and R- Doallo (Spain) 581

Efficient Low and Intermediate Level Vision Algorithms for the LAP MAM Image Processing
Parallel Architecture

Domingo Torres, Herve Mathias, Hassan Rabah and Serge Weber (Mexico) 593

Parallel Image Processing System on a Cluster of Personal Computers
J. Barbosa, J. Tavares and A. J. Padilha (Portugal) 607

Session 12: Reconfigurable Systems
June 22, Thursday (Room A, 17:00-18:00)

Improving the Performance of Heterogeneous DSMs via Multithreading
Renato J.O. Figueiredo, Jeffrey P. Bradford and Jose A.B. Fortes (USA) 621

Solving the Generalized Sylvester Equation with a Systolic
Gloria Martinez, German Fabregat and Vicente Hernandez (Spain) 633

Parallelizing 2D Packing Problems with a Reconfigurable Computing Subsystem
J. Carlos Alves, C. Albuquerque, J. Canas Ferreira and J. Silva Matos (Portugal) 647

PART III (June 23, Friday)

Session 13: Linear Algebra
June 23, Friday (Auditorium, 9:00-10:20)

A Component-Based Stiff ODE Solver on a Cluster of Computers
J.M. Mantas Ruiz and J. Ortega Lopera (Spain) 661

Efficient Pipelining of Level 3 BLAS Routines
Frederic Deprez and Stephane Domas (France) 675

A Parallel Algorithm for Solving the Toeplitz Least Square Problem
Pedro Alonso, Jose M. Badfa and Antonio M. Vidal (Spain) 689

Parallel Preconditioning of Linear Systems Appearing in 3D Plastic Injection Simulation
D. Guerrero, V. Hernandez, J. E. Roman and A.M. Vidal (Spain) 703

Session 14: Languages and Tools
June 23. Friday (Room A, 9:00-10:20)

Measuring the Performance Impact of SP-restricted Programming
Arturo Gonzälez-Escribano et al (Spain) 715

A SCOOPP Evaluation on Packing Parallel Objects in Run-time
Joäo Luis Sobral and Alberto Jose Proenca (Portugal) 729

The Distributed Engineering Framework TENT
Thomas Breitfeld, Tomas Forkert, Hans-Peter Kersken, Andreas Schreiber, Martin
Strietzel and Klaus Wolf (Germany) 743

Suboptimal Communication Schedule for GEN BLOCK Redistribution
Hyun-Gyoo Yook and Myong-Soon Park (Korea) 753

Invited Talk
(June 23, Friday, Auditorium, 10:50-11:50)

Finite/Discrete Element Analysis of Multi-fracture and Multi-contact Phenomena 765
David Roger J. Owen, University of Wales Swansea (Wales, UK)

Session 15: Structural Analysis and Crash
June 23, Friday (Auditorium, 11:50-12:50)

Dynamic Multi-Repartitioning for Parallel Structural Analysis Simulations
Achim Basermann et al (Germany) 791

Parallel Edge-Based Finite-Element Techniques for Nonlinear Solid Mechanics
Marcos A.D. Martins, Jose L.D. Alves and Älvaro L.G.A. Coutinho (Brazil) 805

A Multiplatform Distributed FEMAnalysis System using PVM and MPI
Celio Oda Moretti, Tülio Nogueira Bittencourt and Luiz Fernando Martha (Brazil) 819

Session 16: Imaging
June 23. Friday (Room A, 11:50-12:50)

Synchronous Non-Local Image Processing on Orthogonal Multiprocessor Systems
Leonel Sousa and Oliver Sinnen (Portugal) 829

Reconfigurable Mesh Algorithm for Enhanced Median Filter
Byeong-Moon Jeon, Kyu-Yeol Chae and Chang-Sung Jeong (Korea) 843

Parallel Implementation of a Track Recognition System Using Hough Transform
Augusto Cesar Heluy Dantas, Jose Manoel de Seixas and Felipe Maia Galväo Franca
(Brazil) 857

Session 17: Computational Fluid Dynamics
June 23, Friday (Auditorium, 14:30-15:30)

Modelling of Explosions using a Parallel CFD-Code
C. Troyer, H. Wilkening, R. Koppler and T. Huld (Italy) 871

Fluvial Flowing ofGuaiba River Estuary: A Parallel Solution for the Shallow Water Equations
Model

Rogerio Luis Rizzi, Ricardo Dorenles et al (Brazil) 885

Application of Parallel Simulated Annealing and CFDfor the Design of Internal Flow Systems
Xiaojian Wang and Murali Damodaran (Singapore) 897

Session 18: Numerical Methods and Parallel Algorithms
June 23, Friday (Room A. 14:30-15:30) "

Parallel Algorithm for Fast Cloth Simulation
Sergio Romero, Luis F. Romero and Emilio L. Zapata (Spain) 911

Parallel Approximation to High Multiplicity Scheduling Problem via Smooth Multi-valued
Quadratic Programming

Maria Serna and Fatos Xhafa (Spain) 917

High Level Parallelization of a 3D Electromagnetic Simulation Code with Irregular
Communication Patterns

Emmanuel Cagniot, Thomas Brandes, Jean-Luc Dekeyser, Francis Piriou, Pierre Boulet
and Stephane Clenet (France) 929

Invited Talk
(June 23, Friday. Auditorium, 15:30-16:30)

Large-Eddy Simulations of Turbulent Flows, from Desktop to Supercomputer 939
Ugo Piomelli, Alberto Scotti and Elias Balaras, University of Maryland (USA)

Session 19: Languages and Tools
June 23, Friday (Auditorium, 17:00-17:40)

A Neural Network Based Tool for Semi-automatic Code Transformation
V. Pumell, P.H. Corr and P. Milligan (N. Ireland) 969

Multiple Device Implementation ofWMPI
Hernäni Pedroso and Joäo Gabriel Silva (Portugal) 979

Session 20: Cellular Automata
June 23, Friday (Room A, 17:00-17:40)

Optimisation with Parallel Computing
Sourav Kundu (Japan) 991

Power System Reliability by Sequential Monte Carlo Simulation on Multicomputer Platforms
Carmen L.T. Borges and Djalma M. Falcäo (Brazil) 1005

2

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Component-Based Stiff ODE Solver on a
Cluster of Computers

J.M. Mantas Ruiz1 and J. Ortega Lopera2

1 Dpto. Lenguajes y Sistemas Informäticos. E.T.S. Ingenieria Informätica.
Univ. Granada. Avda. Andalucfa 38, 18U71 - Granada, Spain.

jmmantas<3ugr. es
Dpto. Arquitectura y Tecnologia de Computadores. E.T.S. Ingenieria Informätica.

Univ. Granada. Avda. Andalucfa 38, 18071 - Granada, Spain.
j ortegaOatc.ugr.es

Abstract. The most outstanding aspects of a general-purpose solver of
stiff Ordinary Differential Equations (ODEs) for a cluster of computers
are described. The numerical method used consists of adjusting an inner
iteration process to solve the linear systems which arise when an Implicit
Runge-Kutta (IRK) method is applied. The numerical scheme attains
a high degree of task parallelism by decoupling several calculations. In
order to exploit the data parallelism arising from linear algebra, software
components of parallel linear algebra libraries have been used and a
component-based methodological approach to derive parallel programs
is followed. This approach is especially suitable to exploit the multilevel
parallelism presented by this type of method and extends the TwoL
proposal, made by Rauber and Riinger, by incorporating performance
polymorphism. Several numerical experiments performed with different
test problems reveal satisfactory runtime results with respect to one of
the most advanced sequential stiff ODE solvers.

1 Introduction

The Ordinary Differential Equations (ODEs) arising from the modelling process
may take different forms. One important formulation is that of the Initial Value
Problem (IVP) for ODE, which can be formulated as:

Given a function / : 3? x 5Rd ->• Kd, find the function y : 3? -»■ 5ftrf that fulfils:

y'(t) = f(t,y), y(t0)=y0€^d, t£[t0,tf]. (1)

Numerical methods for integrating IVPs generally work in a step-by-step manner:

the interval [to,tj] is divided into subintervals [to,ti], [<i,io], ■••, [£JV-I,*AT] where
tN = tf, and approximations yi,y-2, ■ ■ ■ ,UN for the solution at the end of each
interval are computed in a so-called integration step.

The stiff IVPs are an important class of IVPs that impose severe stability
demands on the numerical methods of solution [9]. The solution of large stiff ODE
systems is indispensable for modelling a wide variety of time-dependent processes
in science and engineering [4, 9] (pollution models, chemical kinetics, biological

•661 -

FEUP - Faculdade de Engenharia da Universidade do Porto

modelling, control systems, etc.)- In order to solve stiff systems efficiently, it
is necessary to use stable implicit methods [4, 9]. These methods demand a
great deal of computing power, which can be achieved by using efficient parallel
algorithms on Distributed-Memory Parallel Machines (DMPMs).

Because of the nature of the implicit methods, there is a strong connection
between algorithms to solve stiff IVPs and linear algebra techniques. This fact
reveals that the methods to solve stiff ODEs exhibit two levels of potential
parallelism: task parallelism, owing to the fact that these methods can be de-
composed into submethods which can be executed independently by disjointed
groups of processors, and data parallelism, because the most basic submethods
of the decomposition are typically linear algebra computations which are sus-
ceptible to parallelization following a SPMD style.

There exist stiff ODE solvers which run on multicomputers. One of the
most outstanding solvers is the ParSODES package [2], which implements IRK
methods using MPI [8] and gains a typical speedup 3 to 5 over state-of-the-art
sequential stiff solvers on an IBM SP2. However, this solver does not suitably
exploit the potential data parallelism due to the linear algebra operations.

The GSPMD 1 (Group Single Program Multiple Data) [11] programming
model is specially suitable to exploit the multilevel parallelism of these appli-
cations on DMPMs. In [11], a methodological approach for the derivation of
GSPMD programs from existing SPMD modules is presented. This approach,
termed TwoL, has also been applied to the implementation of ODE integrators
on multicomputers. However, this approach does not explicitly support main-
tenance and selection among multiple implementations of a submethod. This
characteristic, the so-called performance polymorphism, is very desirable to im-
prove flexibility in performance tuning during the design of a GSPMD program.

GSPMD PROGRAM

 ► : Data Dependency
I Ci I: SPMD Basic Computation

Gi : Processor Group

Distributed
Memory
Architecture

Fig. 1. Parallel program implemented in a GSPMD style

The interest of this work focuses on the component-based development of
GSPMD software for the numerical solution of large stiff ODE systems on clus-

In a GSPMD computation, several independent subprograms are executed by inde-
pendent groups of processors in parallel.

■662-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

ters of computers. In particular, we examine the parallelization of the class of
one-step Radau IIA IRK methods [9]. These methods combine high accuracy
with excellent stability properties and it is possible to derive parallel numerical
schemes of this class with a lot of potential parallelism in the abovementioned
two levels. In order to maintain flexibility when deriving parallel implementa-
tions of ODE solution methods, we propose an extension of the TwoL approach
which has explicit constructs for performance polymorphism and facilitates the
appropiate reuse of modules of parallel linear algebra libraries [7, 5, 13]. On the
basis of our methodological proposal, we derive a distributed implementation of
an advanced numerical method to integrate stiff ODEs for a PC cluster. This stiff
ODE solver exploits both levels of potential parallelism of the numerical method,
and makes effective use of existing parallel linear algebra software components.
The speedup results obtained show that it is possible to derive efficient clus-
ter implementations of an advanced stiff ODE solver by combining previously
existing SPMD parallel linear algebra components.

The numerical algorithm to be implemented is obtained as a result of several
decisions described in section 2. Section 3 introduces the TwoL approach [11].
An extension of TwoL that supports performance polymorphism is followed to
implement the algorithm on a PC cluster in section 4. Section 5 presents the
experimental results obtained by executing the solver for several test problems
with different dimensions. Conclusions are drawn in section 6.

2 The Newton-PILSRK Method

One of the most interesting approaches to the parallel solution of ODEs consists
of modifying sequential algorithms in order to exploit the parallelism within an
integration step (parallelism across the method) [4, 1]. An advanced numerical
method to achieve parallelism across an IRK method is described in [14]. This
method, the so-called Newton-PILSRK method, is based on the inclusion of a
Parallel Iterative Linear Solver for the Newton systems that arise when an IRK
method is implemented. An implementation of this numerical scheme on a four-
processor shared-memory CRAY C98/4256 [6] obtains a speedup of 2.4 to 3.1
with respect to one of the most advanced sequential solvers, RADAUS [9]. We
will derive an efficient distributed implementation for a PC cluster.

An s-stage IRK method can be conveniently represented by two vectors
c,b € 5RS and a full matrix .4 e 5RSXS. When this is applied to "an IVP-ODE
given by (1), the method takes the form:

yn=yn-i+hn{bT®Id)F{Yn), Yn = {l®Id)yn-i+hn{A®Id)F{Yn), n = l,..,iV (2)

Here hn is the stepsize, i.e., the length of the n-th integration subinterval
[£n_i,t„]. Yn € Ksd is the so-called stage vector defined as:

Yn = (YZUYZ,, Yls)
T where Yn,i » y{U-i + c<A„) € #*, i = 1, ...s .

The symbol 0 denotes the direct product of matrices. I stands for the s-
dimensional unit vector (1,..., 1)T, Id denotes the identity matrix of dimension
d x d and F(Yn) means the componentwise /-evaluation of Yn, i.e.

■663-

FEUP - Faculdade de Engenharia da Universidade do Porto

F(rn) = (f(Yn,i)T,..-J(Yn,s)
T) erd .

Therefore, we have to solve, in every integration step, an sd-dimensional system
of nonlinear equations. This system is usually solved by the modified Newton
iteration that yields a sequence Yn

{0), Yn
(l\ Yn

{2), ... defined by

(Ad--4®A„J„)(yil
ü)-yI,

ü-I») = -JR(yp-I>), j = l,2,...,m (3)

R(X)=X-(E®Id)Yn-l-hn(A®Id)F(X), VJCeR*", E= [0---0 1]

where Yn
{0) = P(Fn_i) (P(-) denotes a predictor operator), and the matrix

J„ is an approximation to the Jacobian of / in (y„_i,*„_i). Process (3) must
be applied as many times as needed to make Ynm) sufficiently close to the true
solution of (2). The definitive approximation of y(t„) wold be yn = Yn™].

A linear system of dimension sd arises in (3). In order to tackle this computa-
tional demand using parallel processing, a relevant numerical scheme is proposed
in [14]. This approach is based on applying an iterative solver to the Newton
systems in (3). This Parallel Iterative Linear System Solver for IRK methods
(PILSRK method) is defined by: t; = 1,.., r

(Isd-T®hnJn)AXü<v) = {Isd-L®hnJn) [X^-l) -xO>-D) +Rnt (4)

where:

- Rn = hn{S-lA® Id)F{YU-») + (S~lE ® Id)Yn-! - X^~l\
- X(0) = (S-1®/</)P(y„_i)1

- AX{j'v) =X(J>)-.Y(J>-1), Xu'0) =XU~1), X{3) =Xi}'r\ Yn = (S®Id)X
(m).

The matrix L = 5_1.4S G 5RSXS is a block diagonal matrix with two blocks,
T e Ksxs is a diagonal matrix with positive entries and 5 S 5JSXS is a real,
nonsingular matrix. Therefore, we can now identify two main sources of task
parallelism in the method:

a) The solution of a linear system of dimension sd with coefficient matrix
lad - A ® h„Jn can be replaced with the solution of s independent systems
of dimension d, with matrix Id - diagi(T)hnJn.

b) Several computations, where the matrix L appears, can be decoupled into
two independent computations on different blocks of L.

Several decisions have been taken to obtain a particular numerical algorithm.
We have concentrated on the superconvergent Radau IIA IRK method with s = 4
stages [9] because it is very suitable for most real applications. We consider r = 2
in (4) because it is sufficient for convergence [14] and the value of m is determined
dynamically. To obtain an initial approximation of the stage vector in every step,
we use the extrapolation predictor defined by Yn

{0) = (P®/d)y„_1, P e Ks

[6]. The resulting algorithm is presented below.
xs

•664-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Algorithm
y'o = (U8/d)</o
for n = l,...,i\" { ./„ ~ %L(yn-i,tn-i); (N is the number of steps)

parfor i = 1, 2 { Mt = L2d - Blocki(L) ® hnJn }
parfor i = 1,..., 4 { LUi = Id - diagi(T)hnJn}

W = (Ä-1^®/d)y„_,; Fn
(0) = (P®Id)Yn-i; X<0) = (S-1P®/d)y„_1;

for j = l,2,...,m { Ä = /ir,(5-1A®/d)P(y„ü-1)) + iy-.Y(j-1);

parfor i = 1, ...,4 { J.Y^ = LU~lRi,d }

parfor i = 1, 2 { Ä,-,2d = 'ft,« - MtAX^d }
parfor j = 1, ...,4 { il.Y^ = AX% + LUf'Rij }

XU) = XU) + AX
ü)

; YnU) = Yn
{j-l) + (S®Id)AXU) }

Yn = Yn
im); yn = Last rf-block in Yn } y; =yN ;

Notation
Blocki{L)= j-th 2 x 2-block of L
Äiid= i-th d-block of R = {Rj4,..., Rjd)T G Ks<i

fi,-,2d= i-th 2d-block of R = (R[M, RJMf € Rsd

3 Component-Based Derivation of GSPMD Programs:
the TwoL Approach

In [11], a parallel programming methodology to derive structured parallel imple-
mentations of numerical methods by using previously existing SPMD modules
was presented. This approach, termed TwoL, is based on the GSPMD model and
makes it possible to exploit the multilevel parallelism exhibited by numerous nu-
merical methods. In TwoL, the derivation of a parallel program for a particular
DMPM is carried out starting from a mathematical description of the numerical
method to be implemented, followed by three stages:

1. Definition of the Module Specification for the numerical method.
In this stage, the programmer must specify the hierarchical structure of the
numerical method by composing methods which are effected by modules.
The modules which appear in the decomposition can be basic modules or
composed modules. The basic modules represent regular algebraic com-
putations on homogeneous data structures that work internally following a
SPMD style according to a certain data distribution. These modules hide the
potential data parallelism of the submethods. The composed modules are
structured combinations of basic modules. The data dependencies between
related modules are expressed by constructors of sequential composition and
constructors of concurrent composition are used to express the possibility
of parallel execution. As a result, we obtain a module specification which
expresses the maximum degree of task parallelism of the method.

2. Deriving the Parallel Frame Program. A parallel frame program is a
module specification augmented with several parallel design decisions which
attempt to adapt the module specification to a particular architecture and
problem in order to achieve good performance results. These decisions are
brieflv described below:

•665-

FEUP - Faciddade de Engenharia da Universidade do Porto

- Scheduling: The execution order of modules without data dependencies
(concurrent composition) is determined. These modules can be executed
in parallel on different groups of processors or consecutively on the same
group.

- Load Balancing: The number of processors used to execute each basic
module is determined.

- Selection of the data distributions for the basic modules: If the basic
modules follow parameterized data distributions, then the parameters
for these modules that result in an optimal runtime solution must be
selected taking into account the cost associated with data redistributions.

3. Obtaining the parallel implementation. These decisions must be trans-
lated into a message-passing program for the target parallel machine.

4 Incorporating Performance Polymorphism into TwoL:
Application to the Derivation of a Stiff ODE Solver

When deriving GSPMD implementations for complex numerical applications like
stiff ODE integration, the functionality of a submethod can be implemented by
using different parallel numerical algorithms which differ only in their perfor-
mance characteristics. Ideally, several implementations for each submethod are
maintained and it would be possible to select the best implementation for each
context without having to deal with the details of the respective implementation.
This desirable characteristic is called performance polymorphism. The selection
of the best implementation depends fundamentally on the target machine, the
problem to be solved, and the data distribution scheme of the application.

One approach to achieve performance polymorphism is based on the use
of poly-algorithms [13]. However, this approach involves the design of efficient
heuristic decision routines to select the best algorithm at runtime and the incor-
poration of new algorithms requires the modification of these routines.

The TwoL methodological approach does not have explicit constructs for
performance polymorphism. On the basis of a component-based development
approach [12], a proposal to integrate performance polymorphism within the
TwoL framework will be presented. The central idea of our methodological pro-
posal is the construction of a basic module by linking two different components:
concepts and realizations.

A concept formally defines the functional properties of a basic module,
including all functional aspects of the module interface. The operation signature
must be presented together with a description of module functionality. A concept
that denotes the computation of an approximation to the Jacobian of a function
/ in a point (t, y) £ Kd+1 is presented in figure 2.

A realization encapsulates the information related to an implementation
of a basic module and has two parts: the header and the body. The header is
a client-visible part which describes all performance aspects that the customer
programmer needs to know in order to use the component, such as the data dis-
tributions for the matrices (parameterized distributions are generally used), and

■666-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

runtime formulas, obtained from a simplified DMPM model. The runtime formu-
las allow the user to select the best realization to implement the functionality of
a given concept according to several parameters; these describe the data distri-
butions, the target machine (number of processors N, per word communication
cost tw, message startup time ts, etc.), and the problem size. The body is the
implementation code of the module which can be obtained from linear algebra
parallel libraries [5, 3] or can be denned by the user.

Each concept can have several associated realizations. The explicit distinc-
tion between concept and realization as separate components allows us to select
the implementation that offers the best performance, for a given functionality
specification. Logically, this selection must include the establishment of the data
distribution parameters which appear in the realization header.

Two different realizations for the concept MJacobian are shown in figure
2. The realization Block.M Jacobian works internally computing one block of
the Jacobian matrix in each processor and the realization BCyclic-M Jacobian
works according to a more general block-cyclic distribution of the matrix Jn.

CONCEPT MJacobian
CONCEPT MJacobian (IN integer d, double t, y(d),

FUNCTION/ FROM [integer d, double t,yo(d)} TO [doubleyl(d)], OUT double Jn(d,d))
ENSURES for all i,j: {x:integer where/(7<=;cj and (x<=d))}

(Jn(j,i)=... An approximation to d/M'^) using forward differences)

_REALIZATION_Block^MJacobian_
"" HEADER

REALIZAT10N_BCyclic_MJacobian
r~ ~ HEADER "" ~

REALIZATION.HEADER Block_MJacobian
FOR MJacobian

DATA.DISTR1BUTION
REP y. BLOCK (d,anint(d/P)) Vn

RUNTlME.FORMULA(rf, // P tc. tw, ts)
{ RETURN tf+anint(d/P)*(tf+d*tc))

BODY
SUBROUTINE Block MJacobian (...)

REALIZATION.HEADER
BCyclicMJacobian FOR MJacobian

PARAMETRIC integer DD(6)
DATA.DISTR1BUTION

REP y ; BCYCLIC (DD) Jn
RUmiME.FORMVLA(d.tf,DD.P....){..

BODY
SUBROUTINE BCyclic MJacobian (...)

Fig. 2. Several realizations for the concept MJacobian

Taking into account the two types of components required to build a basic
module, an extension of the TwoL approach will be proposed. In our proposal,
three stages are also used, as shown in figure 3. This proposal will be used to
derive an implementation of the Newton-PILSRK method for a PC cluster.

4.1 Concept Composition

When the mathematical description of the numerical method is available, several
concepts must be selected in order to achieve the functionality of the submethods.

■667-

FEUP - Faculdade de Engenharia da Universidade do Porto

Concepts for the submethods seW*0-"-
Parallel Numerical Method

Parallel Frame Program
1^ Translation

Final Implementation

Fig. 3. Derivation of Parallel Programs in the proposed extension of TwoL

In order to describe the functionality of the parallel numerical algorithm pre-
sented in section 2, we have selected the following concepts:

Basic Concept Brief functionality description
EldpIdV(s,d. y, Y) Y<—(i®id)y »eü'jer
Vcopy(n,.Y, Y) Y <— X X, Y e K"
Mcopy(m, n, A, B) B<—A A,Bemmxn

Vsum(n, a, .V, Y) Y <— aX + Y X, Y e K", a € »
MVproduct(m, n, a, A, X, b, Y) Y <— a AX + bY X, Y € »", a, b 6 H, A, B 6 »m * "
LUdecomp(ro, n, A, Ip) LU Factorization of A E SRmx"
SolveSystom(n, A, Ip, X) X <— A~iX, assumes LUdccomp(n, n, .1, Ip)
MJacobian(d,f, y, /, Jn) Jn^^(y,t) y eftd,teM, Jn eMdxd

Msumld(n,a,yl) A <— /„ + aA A £ »"*", o£»
Mdircctproduct(m,n, r, s, A, B, C) Ci— A®B ,USm",B£S"',CGS""""
MdircctpIdV(s,d,/l,y) y<—(A®/<,)>- Aes'^jGr
VFeval(s,d.c,(,/i,/, Y) y<—FAY), c £ 5ft", y 6 K*d, (,ft e »
InitVectors (s, d, A, P, Y0, W, Y, X) [vv.yx] <— [(,i®/d)r0, (P®/d)Vo, (AP®/d)r0J

A, P 6 »* *', Y0, W, y -V € Käd

ConvergenceCtrl (...) Control the convergence of the Newton Process
ErrorCtrl (...) Control the local error and adjust the stcpsize

These concepts must be combined by using constructors of sequential and
concurrent composition to obtain a module specification. In contrast to TwoL
module specification, in this case the components which are combined are not
basic modules, that denote particular implementations of submethods, but are
fundamentally concepts that denote only the functionality of the submethods.
These concepts are substituted by specific implementations in the next stage,
when all the design decisions that influence performance are taken.

The module specification can also contain references to composed modules.
These modules must be previously defined by combining concepts. Two com-
posed modules have been defined to implement the Newton-PILSRK method
and their functionality is briefly described below.

-668-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Composed Module Brief functionality description
ComputcR (s. d. A,.. f, Y, W, X, R) R = h(A®Id)F,(Y) + W - X, A 6 K°x', Y,W,X.Re »äd

UpdatcVcctors (s, d, A, DX, X. Y) [X, Y, DX] <— [X + DX, Y + {A ® Id)DX, [A 8 Id)DX\
4 6»"', X,Y, DX 6 M'd

A graphical description of the module specification for the Newton-PILSRK
method is presented in figure 4. The arrows denote data dependencies between
components and the rectangles represent references to components.

EldpldV(s,d,yo,Yo) °m»/,)>„!

(^ While (t<tf) ~~y*

| MJacobian(d,t,yo,f,Jn)

I Jn 3fly,

InitVectors(s,d,S ,P,Yo,W,Yn,X)
W = is 'EV/JY. ,
Ym = {P«1JY. ,
X*"- = (S 'P&IJY. ,

PAR i - 1 , 2
Mdirectproduct (2,2,d,d,Li,Jn,Mi)
Msumld(2d,-1.0»h,Mi)
 M, = Ui — Block,(L.)»h,Jn

PAR 1-1,4
Mcopy(d,d,Jn,l_Ui)
MsumId(d,-1.0*Ti*h,LUi)
LUdecomp(d,d,LUi,IPi)
Factorize LU, = /4 — diagXT)h„Jn

J X-Ui, IPi i-1.4

While(not convergence)

ComputeR (s,d,S'A,t,c,h,ftYn,W,X,R)

^
PAR 1-1,41
Vcopy (d,R(d(i-1)-t-1),DX(d(i-1)+1))
SolveSystem (d,LUi,lPi,DX(d(i-1)+1)) X,J" = LU,R,A

PAR i - 1 , 2]
M Vproduct(2d,2d, 1 0,Mi,OX(2d(i-1)+1), 1.0,R(2d(i-1)+1))

^
PAR I- 1 ,4[

SolveSystem (d,LUi,IPi,R(d(i-1)+1))
Vsum(d, 1 0,R(d(i-1)+1),DX(d(i-1)+1))

^
X,J" -+- LU, 'K„

Update Vcctors(s,d,S,DX,X,Yn) x" = X™ + X" Y "' -= Y " " + (S» I) X™

Ix, Yn, I

X, Yn, cunverBence ConvergcnceCtrl (s,d,OX,rtol,atol,convergence)

| KrrorCtrl(s,d,ho,h,yo,Yo,Yn, t,tf,c,f,Jn,rtol,atol) I >"■ "'■ Y°''

Vcopy(d,yo,yf)

Fig. 4. Graphical representation of the module specification for the method

4.2 Taking Parallel Design Decisions

All the design decisions that affect the performance of the final implementation
must be taken at this stage. To carry out this stage, the following information,
besides the previously obtained module specification, has to be available:

- The existing realizations for each concept of the module specification.

•669-

FEUP - Faculdade de Engenharia da Universidade do Porto

- The data distribution types for every array argument of the program to be
implemented. In our implementation of the Newton-PILSRK method, all the
vector arguments of the solver (the initial vector y0 and the solution vector
2//) are assumed to be replicated among the processors.

- Parameters defining the target machine and the problem size. In our im-
plementation, the target machine is a cluster of 8 PCs based on Pentium
II (333 MHz with 128 MB SDRAM) with a switch fast Ethernet intercon-
nection network (ts « 320/w and tw « 0.39/is). We will consider IVPs with
dimension lower than 1700.

The decisions to be taken in this stage include, as in TwoL, scheduling and
load balancing, but also a task called instantiation must be performed. The
instantiation involves two main decisions. The first of which concerns the selec-
tion of the best realization for each concept that appears in the module specifi-
cation. In the final structure, only calls to realizations appear. All references to a
composed module which appear in the module specification must be recursively
replaced with realizations. The second decision implies determining the most
suitable data distribution parameters for each realization chosen and the inser-
tion of the required data redistribution routines. The two selection processes are
interdependent and must be performed in conjunction with the scheduling and
load balancing to obtain a good global runtime solution.

Although, different heuristic techniques are being evaluated to carry out this
stage automatically, currently there is no technique available to automate this
stage by using the runtime formulas embedded in the realizations. In order to
derive an efficient stiff ODE solver, we will follow three guidelines: the even
distribution of computational work among the processors, the use of optimal
realizations and data distributions for those tasks that impose greatest compu-
tational demands and the minimization of redistribution costs. Just by following
these guidelines, we have obtained a very satisfactory solution.

Scheduling and Load Balancing We consider a one dimensional 8x1 grid
as being the logical topology, and so the SPMD modules run on the groups of
processors defined in this structure. These groups are described using a simple
notation which must appear in a section of the parallel frame program called
GRID.DESCRIPTION (see figure 5(a)).

A graphical description of the parallel frame program can be seen in figure
6. In this figure, the arrows denote the real execution order and each component
is labelled with an identifier indicating the processor group where it is executed.
As can be seen, the only tasks executed in parallel on disjointed groups are in
the concurrent loops which denote most of the task parallelism of the method.
These tasks include the solution of the linear systems for each stage as well as
every independent computation in which the block-diagonal matrix L takes part.
This choice makes it possible to obtain an even distribution of the computational
load.

■670-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Instantiation Some realizations have been obtained from the libraries PBLAS
{PDCOPY, PDAXPY and PDGEMV) [5] and SCALAPACK {PDLACPY,
PDGETRF and PDGETRS) [3]. These realizations manage arrays according
to a parameterized block-cyclic data distribution. The remaining realizations
were implemented to perform in parallel several matrix computations which are
frequently required when IRK methods are implemented.

The particular data distributions used in the instantiation are described in
the DATA.DISTRIBUTION section of the parallel frame program (see figure 5
(b)), where the block-cyclic distribution template is instantiated by specifying a
processor group and a block size.

Figure 6 indicates the data distribution which follows each matrix argu-
ment in every realization. The same figure has arrows labelled with redistribu-
tion operations. Most of redistribution operations have been implemented with
the ScaLAPACK redistribution/copy routine PDGEMR2D. However, two user-
defined redistribution operations have been used to replicate a block-cyclically
distributed matrix (BCYCLIC(..) A —> REP B) and to copy a replicated ma-
trix in a block-cyclically distributed matrix (REP A —> BCYCLIC{..) B).

GRID.DESCRIPTION
CONST (P=8, H=P/2, Q=P/4)
GRlD[Px 1] Gl

REP i= 1,2
SUBGR1D [H x 1] G2(i) IS

[(i-l)*H,0]...[i*H-l,OJ
REP i= 1,4

SUBGRID[Q x 1] G4(i) IS
[(i-l)*Q,0]...[(i-l)*Q+l,0]

IG4(1)
i S-G20)
IG4(2)J

IG4(3)

fG4(4)J

DATA.DISTRIBUTION
CONST (Lfl=64, MB«S*D/P)
BCYCLIC(MB,1,G1)VDG1
SCYCLIC(D,D/P,G1) MDG1
REP i= 1,2

BCYCL1C(LB,1 ,G2(i)) VDG2(i)
BCYCLIC(LB,LB,G2(i)) MDG2(i)

REP i-1,4
BCYCUC(LB,1 ,G4(i)) VDG4(i)
BCYCLIC(LB,LB,G4(i)) MDG4(i)

(b)

Fig. 5. Description of the processor groups (a) and the data distribution types (b)

We have selected optimal realizations and data distributions for the tasks
which make greatest computational demands. These tasks are:

— The dense LU factorizations of the matrices LUi — Id — diagi(T)hnJn €
J?sxs, i — 1,... s, and the solution of the linear systems which use these
coefficient matrices. We have used 64 x 64 blocks in the ScaLAPACK re-
alizations PDGETRF (LU Factorization) and PDGETRS (system solution)
which provide a good performance.

— The computation of an approximation to the Jacobian. We have used the
Block-M Jacobian realization because this gives the best runtime results.

— The computation of Blocki(L) ® hnJn, i = 1,..., 2. To perform this task,
we have selected a parallel version of the direct product of matrices in which
the input arguments are assumed to be replicated among all the processors of
a group and the output matrix is block-cyclically distributed. This realization
(Bcyclic-Mdirectproduct) allows us to achieve the best runtime results.

■671

FEUP - Faculdade de Engenhaha da Universidade do Porto

Bcyclic_EIdpldV (s.d.yo.VDCl Yo) ON Gl

C While (t<tf) ~y*

T
Block MJaeobian (d,t,yo,f,Jn) ON GJ]

^ MOG\ Jn > RbPJn

BCyclicMdirectproduct (2,2,d,d,I_i,Jn,MDG2(i) Ml) ON G2(l) j
BCycIic_MsumId (2d,-1 0*h,MDG2(I) Mi) ON G2(l) i

I KEHJn >MOG4(i) LUi , i = 1..4
PAR I- 1 ,41

BCyclic_MsumId (d,-1.0*Ti*h,MDG4(i) LUI) ON G4(i)
PDGETRF (d,d,MDG4(l) LUi.IPi) ON G4(l)

BCyclic_InitVectors (s,d,S ',P,VDG1 Yo,W,Yn,X) ON Gl I

X
-*\ While(not convergence) J

ComputeR (s,d,S 'A,t,c,h,f,VDGl Yn,WAR) ON Gl

■ VOG4{i)R4 , i=> 1..4
PAR 1-1.4]

PDCOPY (d,VDG4(l) R4, DX4) ON G4(l)
PDGETRS (d,MDG4(l)LUl,lPi,VPG4(l) DX4) ON G4(l)

PAK i = o,l
VOG4{2i +J) RA, DX4 —>yoC2(i +1) «2; , DXlj ,J*

PAR 1-1.21
PDOEMV (2d,2d,1.0.MDG2(n M1.VDG20) DX2.1.0.VDG2») R2) ON G2fl)

fAK I = 0.1

^ VOGZKi + 1)K2, —>VUG4[2i + j)K4.i= 1.2
PAR 1-1.41
PDGETRS (d,MDG4(l) LUi,IPi,VDG4(i) R4) ON G4(l)
PDAXPY (d,1.0,VDG4(l) R4.DX4) ON G4(l)

\VLiG4 OX4—> VUG\ £>Xi. i - 1..4

Update Vectors (s.d.S.VDGl DX,X,Yn) ON Gl \

ConvergenceCtrl (s,d,VDGl DX.rtol.atol.converKence) ON Gl [

ErrorCtrl (s,d,hO,h,yo,VDGl Yo,Yn,t,tf,c,f,Jn,rtol,atol) ON Gl \

X
IDCOPY (d.yo.yl) ON Gl|

Fig. 6. Graphical description of the parallel frame program

With these decisions, a perfect load balance is achieved because the data
for each stage are assigned to a different processor group. On the other hand,
redistribution expenses are not high if compared with computation costs.

4.3 The parallel program obtained

The parallel frame program has been translated into a message passing program
which is expressed in Fortran augmented with BLAS and BLACS [3]. A version
of BLAS [3] optimized for INTEL Pentium II has been used.

5 Numerical Experiments

We compare the runtime performance of our parallel solver with one of the most
robust and efficient sequential stiff ODE solvers, the experimental code RADAUS
[9]. We use three test stiff IVPs from [10, 9] which describe several phenomena:

■672-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Problem dimension (d) Description
Emep 66 The chemistry part of an ozone chemistry model
Cusp 96 A model problem combining three smaller problems
Medical Akzo 400 Injection of a medicine into a tumorous tissue

Since our solver still lacks an error control strategy which would make it
possible to select dynamically the most suitable stepsize in every integration
step, we perform the tests for one integration step.

It is important to note that in order to get effective performance from a
parallel ODE solver, the IVP dimension must be large and the function / should
be expensive to evaluate [4]. Otherwise, communication time will dominate com-
putation time. Therefore, to test our solver the IVPs must be scaled. To scale
the IVPs, we use a technique described in [1] which basically produces a linear
coupling of the original IVP with a function / that is expensive to evaluate.

Some runtime results using different dimensions and the resultant speedup
values are presented in figure 7. The results reveal that for systems with more
than 1000 equations and a right hand function / relatively expensive to evaluate,
a speedup of 4.5 to 5.8 can be achieved on a cluster of 8 PCs.

Approx.
Medakzo Cusp Emep

Dim. Ti
rtad5

n
IUd5

Ts

Rad5
Ts

100 0.05 0.63 0.15 0.83
200 0.35 0.72 0.52 1.04
300 1.58 1.22 2.64 1.91
400 4.17 1.80 3.68 1.73 4.22 2.18
500 7.3 2.58 9.73 3.53
600 19.6 5.28 18.5 5.47
700 28.0 7.16 25.5 6.87
800 33.2 7.71 41.3 9.67 31.7 8.17
900 56.1 12.4 49.9 11.4
1000 75.5 15.7 73.5 16.1
1100 95.9 19.3 89.9 19.0
1200 115.7 21.6 125 24.7 127 25.4
1300 153 29.3 141 27.5
1400 190 36.1 188 35.6
1500 220 40.3 222 44.8
1600 284 48.8 279 48.4 299 54.1

Medakzo —■—
Cusp —Ö—
Emep -■■*—

or^ J^x
$r

M*

/>
0>' ,*

y.
0 200 400 600 800 1000 1200

Dimension

1400 1600

Fig. 7. Some runtime results in seconds and speedup values with the test problems

6 Conclusions

An extension of the TwoL approach which explicitly supports performance poly-
morphism has been proposed. The proposal allows the user to select the most
suitable SPMD implementations for the computation phases of a numerical
GSPMD program. This improves flexibility in the performance tuning of the
GSPMD software. The proposal has been employed to derive an efficient stiff
ODE integrator for a cluster of 8 PCs. The integrator is based on an advanced

-673-

FEUP - Faculdade de Engenharia da Universidade do Porto

numerical method with excellent stability properties and exploits both levels of
potential parallelism exhibited by the method and makes effective use of existing

parallel linear algebra modules. The implementation achieves a speedup of 4.5
to 5.8 for relatively large dense stiff ODE systems. These results confirm that it

is possible to derive efficient parallel implementations of IRK methods on a PC
cluster by composing SPMD modules.

Acknowledgements

The experimental results of this work were obtained on a PC cluster supported by the
project TIC97-1149 of the CICYT. We would like to thank the contribution of Jose
Antonio Carrillo (Granada Univ.) for his assistance in numerical methods.

References

[1] Claus Bendtsen. Parallel Numerical Algorithms for the Solution of Systems of
Ordinary Differential Equations. PhD thesis, Institute of Mathematical Modelling.
Technical University of Denmark, 1996.

[2] Claus Bendtsen. ParSODES - A Parallel Stiff ODE Solver. User's Guide. Technical
Report 96-Ü7, UNI-C,DTU, Bldg, 1996.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK User's Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 1997.

[4] K. Burrage. Parallel and Sequential Methods for Ordinary Differential Equations.
Oxford Science Publications, 1995.

[5] J. Choi, J. J. Dongarra, S Ostrouchov, A. Petitet, D. Walker, and R. Clint Whaley.
A proposal for a set of parallel basic linear algebra subprograms. Technical Report
CS-95-292, Computer Science Dept. University of Tennesee, May 1995.

[6] Jacques J. B. de Swart. Parallel Soßware for Implicit Differential Equations. PhD
thesis, Amsterdam University, 1997.

[7] J. J. Dongarra and D. W. Walker. Software libraries for linear Algebra Compu-
tations on High Performance Computers. SIAM Review, 1995.

[8] Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
Univ. of Tennessee, Knoxville, Tennessee, 1995.

[9] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential Algebraic Problems. Springer-Verlag, 1996.

[10] W. M. Lioen, J. J. B. De Swart, and W.A. Van Der Veen. Test set for IVP solvers.
Technical Report NM-R9615, CWI, 1996.

[11] T. Rauber and G. Riinger. Deriving Structured Parallel Implementations for
Numerical Methods. The Euromicro Journal, 41:589-608, 1996.

[12] M. Sitaraman and B. Weide. Special Feature: Component-Based Software Using
RESOLVE. ACM SIGSOFT, Software Engineering Notes, 19, 1994.

[13] A. Skjellum, Alvin P. Leung, S. G. Smith, R.D. Falgout, C.H. Still, and C. H. Bald-
win. The Multicomputer Toolbox - First-Generation Scalable Libraries. HICSS-27,
pages 644-654, 1994.

[14] P. J. Van der Houwen and J. J. B. de Swart. Parallel linear system solvers
for Runge-Kutta methods. Advances in Computational Mathematics, 7:157-181,
March 1997.

•674-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Efficient Pipelining of Level 3 BLAS Routines

Frederic Desprez and Stephane Domas

LIP, ENS Lyon
46 Allee d'Italie

F-69364 Lyon cedex 07
(desprez ,sdomas)@ens-lyon.fr

Abstract. This paper presents a method that handles automatically a
pipeline of level 3 BLAS routines, executed on different processors. It is
based on linear graph of tasks (each task is a single BLAS 3 call), which
describes the dependences between the matrices used for computations.
From such a graph and from a theoretical model of level 3 BLAS execu-
tion times, we determine the best blocking for each task and the optimal
blocking strategy size for the pipeline.

1 Introduction

Optimizing parallel algorithms is a difficult task, especially if we keep in mind
the portability issues. However, several techniques exists to speed up parallel ap-
plications on distributed memory machines. Asynchronous communications are
a way to improve the performances and the scalability of parallel routines. Using
such communications, a processor can compute while communicating, reducing
the total overhead of communications. Pipelining is an optimization technique
that can be used when data dependences produce too much idle time. It consists
in splitting a task in a certain number of sub-tasks and to communicate the re-
sult of one sub-task as soon as it has been computed, allowing the next processor
to start sooner. The way tasks are split is of course dependent of many param-
eters (algorithm, network bandwidth and latency, computation speed, ...). It
can often be computed or approximated to obtain the best performances.

Since many numerical applications are now using the standardized level 3
BLAS calls, our aim is to provide a general mechanism for the use of pipelined
overlap when the result of a level 3 BLAS task has to be communicated. Because
level 3 BLAS routines are already optimized for a broad range of processors,
possible optimizations can be made in a succession of BLAS calls, executed on
different processors. At the moment, we target linear tasks graphs where each
task is executed on a different processor and where tasks can be split. We show
how tasks have to be split and when.

Many numerical applications can benefit of such optimization. In [3], the
authors describe mechanisms to parallelize applications with two levels of par-
allelism; coarse-grain task parallelism at the outer level and data-parallelism at
the inner level. Their motivating example is an algorithm for the computation of
eigenvalues of a dense non-symmetric matrix [1]. Sparse matrix factorization like

-675-

FEUP - Faculdade de Engenharia da Universidade do Porto

the one described in [5] or \1\ can also make use of these mechanisms. Those al-
gorithms compute dense BLAS operations on different blocks with dependencies
between the blocks (given by the sparse structure of the matrix). The problem
in this last example is that dependencies are only known at run-time. However,
the optimization we describe can be used inside the run-time system or after the
symbolic factorization.

One important part of the optimization process is the blocking of the com-
putation routine. The goal is to keep the computation speed high and to reduce
its grain. Several papers discuss the optimization of level 3 BLAS codes using
loop partitioning techniques and efficient use of the memory hierarchy [4,8]. The
most recent works are inside the PHiPAC [2] and ATLAS projects [9].

In this paper, we present an overview of problems and solutions for a motivat-
ing example. Then, we describe in detail the two main steps of our methodology.
We finish by experimental results and an example of combination of our approach
with data-parallelism.

2 Motivating Example

Our motivating example is a linear task graph made of five matrix product tasks
(level 3 BLAS DGEMM routine) executed on five different processors. Dependencies
between the tasks are given in Figure 1. The first arrow means that after its
computation, matrix C is sent to the next processor as an entry of the next
matrix product. Its a flow dependence (read after write).

T4j [H] = [H] +1 i 1 x F

(TS) 0 = 0^^X0

Fig. 1. Motivating Example: pipeline of 5 matrix product tasks.

This example is quite simple but it shows the main issues in the optimization
of such a pipeline of level 3 BLAS routines. We have chosen the matrix product
because it is used as a kernel operation of many linear algebra algorithms and

676-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

there are many simple ways of blocking its loops. Moreover, other level 3 BLAS
routines can be efficiently rewritten with DGEMM calls [8].

Because of the dependences between the tasks, the execution of such task
graph can not be optimized without a split of the tasks. If different processors are
chosen for the execution of each task, the overall parallel execution time is even
worse than the sequential one because we add the cost of the communications
between different processors.

3 Pipelining the motivating example

There are several ways to block the computations to pipeline the DGEMM tasks.
It is equivalent to split the matrices. In Figure 2, we give three different ways
to block the matrices used in a multiplication. Every loop can be blocked but it
may not lead to an efficient communication pipeline.

(a)

c, A,
c, = A, X B
c, A,

horizontal horizontal no cut of B
cut of C cut of A

(b)

"iP;Cj = A X 3,6,6,

vertical no cut of A vertical
cut of C cut of B

(c)

c, + c. + c. = A
.1

sum of partial C vertical cut of A

B5.

horizontal cut of B

Fig. 2. Motivating Example: three possible blockings for the matrix product algorithm.

In the first two cases, we only block one matrix and compute vertical or hor-
izontal blocks of C. The resulting algorithm is perfect for a pipeline since a task
receives, computes and sends rectangular blocks. The third case is problematic
since we compute square blocks which are intermediate results. This situation is
best avoided but in our example, the dependencies between matrices have been
chosen to bring such a case. We will show later how to solve this problem.

3.1 Choosing a Blocking for the Computations

Taking into account the dependencies, we must find an efficient way to block
the computations for each task in the graph. Instead of vertical or horizontal
blocks, we will use more obvious notations. According to the BLAS reference
guide [6], a DGEMM uses three matrices: A(MxK), B(HxN) and C(MXN)- In the

■677-

FEUP - Faculdade de Engenhaha da Universidade do Porto

the first blocking in Figure 2, .4 is blocked along its M dimension. In the second
solution, B is blocked along its N dimension. In the last solution, .4 and B are
blocked along their K dimension. Thus, we will use the notations A/-block, N-
block and ÄT-block for the three possibilities to block a DGEMM and more generally,
each BLAS 3.

We will also use the notation S-block when the matrices are the sum of
partial results like C in the third case. Meanwhile, an S-block DGEMM requires
more than O(MNK) floating operations to compute and thus, must be avoided.

3.2 Choosing a Blocking for the Communications

In our example, we always send a result matrix. Thus, the "orientation" (vertical
or horizontal) of the blocks that are sent is determined by the blocking used for
the computation. For example, if the first task is Af-block, the result matrix C"
is blocked horizontally and horizontal blocks must be sent. If it is not a result
matrix that is sent, we have the choice for the orientation.

Since there is no preferred dimension for the communications, we use the
notation ff-block or y-block depending on the "orientation" of the blocks that
are sent. We also use the notation S-block when a matrix is sent in partial results
and 0-block when the matrix is sent in a whole.

3.3 Some Solutions to Block the Matrices

In Table 1, we present four ways of blocking computations and communications
for the motivating example. For each solution, the left column gives the blocking
used for the computations and the right column, the blocking for the communi-
cations.

Task 1 Task 2 Task 3 Task 4 Task 5
Solution 1 O/O 0/0 0/0 0/0 0/-
Solution 2 Af/H Af/H K/S s/s s/-
Solution 3 Af/H M/H K/0 Af/H M/-
Solution 4 Af/H Af/O N/V N/V Kl-

Table 1. Four different blocking for our motivating example.

First solution: no pipeline. Sequential execution.
Second solution: Task 1 and 2 use Af-block for the computations. Task 3
receives horizontal blocks in D. It implies that Task 3 is fsT-block and the
result matrix F is S-block. Further tasks in the pipeline are also S-block.
Third solution: it begins like the second solution but Task 3 sends the
whole F matrix (0-block communication) instead of an S-block communi-
cation. Then, Task 4 begins a "new" pipeline with Af-block computations.
Fourth solution: Task 1 and 2 are Af-block for computations but Task
2 sends the whole D matrix. Then, Task 3 begins a "new" pipeline with
iV-block computations.

■678-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Assuming that each task needs 3 seconds to complete and we divide them in
3 (i.e. blocking size = 3). We also assume that each sub-task takes 1 second to
complete (which is not experimentally true). The Figure 3 shows a Gantt-like
diagram for each solution. Rectangles are the tasks or the sub-tasks and the
lines, the communications.

1*

Fig. 3. Motivating example: Gantt chart for the four solutions.

— In the first column, all tasks are completed before sending the result to the
next task in the pipeline. It is the no-pipeline, no-overlap solution and it
takes 27 seconds to complete.

— The second solution takes a little less time than the no-pipeline solution
since there are some 5-block computations. Task 4 computes F.I + H -> H.
Blocking F in 3, Task 4 mathematically computes (Fi + F2 + F3).I + H -»•
H which requires 3ri2 + n3 operations. But the F; matrices are received
sequentially. Thus, Task 4 computes Fi.I + F2.I + F3.I + H —> H which
requires 3n2 + 3n3 operations. The same occurs for the Task 5 and it leads
to an execution time in 23 seconds. It is better than the first solution but
largely more than a sequential execution on a single processor (15 seconds).

— For the third and fourth solutions, a gain close to 2 can be reached despite
of the chain of BLAS is divided in two pipelines.

4 Computing the optimal parameters for the pipeline

The motivating example points out that the pipeline efficiency greatly depends
on the blocking for each matrix. Solutions 3 and 4 prove that there is a set of
best blockings. Another parameter is the blocking size. A blocking size of 3 is
surely not the optimal value for experimental tests, especially for solutions 3 and
4 where the two pipelines may have different blocking sizes. Choosing a blocking

■679-

FEUP - Faculdade de Engenharia da Universidade do Porto

size which is too small leads to an inefficient pipeline. Choosing one size too big
multiplies the communication latencies and reduces the BLAS 3 efficiency since
the blocks used in computations are smaller. In order to fix these two parameters,
our method consists in two steps: finding the set of best blocking solutions and
then finding the optimal blocking size(s) for each solution.

With the optimal blocking size(s), we can compute the total execution time
of each pipeline and determine the best solution.

4.1 Finding the Set of Best Blocking Solutions

The blocking of each task is very often determined by a previous one in the
pipeline but sometimes, it can be chosen. In this case, we obtain several possible
chains of blocking. A tree with all possibilities can be constructed but with an
assumption and a condition, only the "best" solutions in the tree can be picked.
Best means that these solutions lead to an efficient pipeline.

In the second solution of the Figure 3, we see that 5-block computations
are propagated and reduce the efficiency of the pipeline. In the solution 3, we
exchange the first 5-block communication by an 0-block communication. Then,
the pipeline is more efficient.

In the fourth solution, there are no K-h\ook computations (except the last
but it has no influence). Mathematically, a if-block computation always implies
a S-block communication, which must be avoided. In this solution, each task
sends a block that does not produce a if-block computation in the next task. If
it is not possible, the task sends a 0-block matrix. To summarize, we have:

- NSP-assumption ("No 5-block Please !"): each time an 5-block commu-
nication occurs, replace it by the communication of the whole matrix, i.e.
delay the communication outside the loops.

- NCB-condition ("Next Computation Blocking"): sending horizontal or ver-
tical blocks produces a if-block computation in the next task.

According to Table 1 and Figure 3, when the NCB-condition occurs, we have
the choice to send horizontal or vertical blocks as in solution 3, or to send the
whole matrix as in solution 4. Indeed, the third and the fourth solution are
equally efficient thus we cannot decide when it is interesting to send the whole
matrix and when it is not. Consequently, two solutions must be generated.

The algorithm that constructs the set is given in Figure 4. The computation
and communication blocking of the ith task are noted BLt = [campi\ comrrii]
(for example, [M; H]). Each solution is a set of BLt, constructed by iterating on
the tasks, taking account of the dependencies, the type of BLAS 3 and testing
if NSP-assumption or NCB-condition occurs.

4.2 Computation of the Optimal Blocking Size

We have seen in the motivating example that it is mandatory to know the exe-
cution time of each task to determine the best blocking solution. We have also
supposed that the tasks were split in 3 sub-tasks. In fact, the blocking size very

■680-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

nbsoi = 1 /* number of solutions */
Sol = 0 /* set of solution is empty */
For i = 1 to ribtask - 1 do

For j = 1 to nbsoi do
Find BLt from description of taskt and BL,_i
If (comm'i = S) || (comm'i = (d)then

Use NSP-assumption-» comm'i = 0-
Concat BLi with Solj.

Else
Concat BLi with Solj.
If (NCB-condition applies) then

/* create a new solution */
cut\ = BLi
comm'i = 0
Solnbscl+i = Solj.
Concat cut\ with Soln0aol+i.
nbsoi = nbsoi + 1.

Endif
Endif

End for
End for

Fig. 4. Algorithm to construct the set of the best solutions.

influences the efficiency of the pipeline. A matrix multiplication split in L partial
computations takes more time than the the computation performed in one time.
But, the execution time of the pipeline can only be determined if the blocking
size is fixed. Our goal is to compute automatically the optimal blocking size L
for each solution.

Theoretical Level 3 BLAS Execution Time All level 3 BLAS subroutines
are matrix-matrix operations and thus compute 0(n3) floating point operations
for 0(n2) memory accesses. More generally, the execution time of a level 3 BLAS
depends on the size of the matrices which are involved in the computation. Let
A(MxK), B(KxN)> and C(MXN) be the three matrices used by a level 3 BLAS.
We assume that the execution time of a level 3 BLAS is given by the expression:

TBLASZ(M, N, K) = aMNK + bMN + cMK + dNK + eM + fN + gK + h (1)

where a.. .h, parameters that depend on the algorithm used in the routine
and on the target machine used. These parameters can be found by an interpola-
tion on experimental tests. Unfortunately, we have noticed that they vary as the
protocol of the tests vary (increasing step for the matrix size, which dimension
increases ...). In order to have consistent parameters, it is necessary to have
specific expressions of level 3 BLAS execution time for our problem.

■681 -

FEUP - Faculdade de Engenharia da Universidade do Porto

According to the BLAS syntax, a DGEMM (aA.B+ßC -4 C) can be A/-block, AT-
block or AT-block. The expression 1 does not take care of the blocking dimension.
Consequently, we take a different expression for each case. For example, the
expression for an M-block computation of DGEMM is:

TGEMMW, N, K) = (aMM + bM)NK + {cMM + dM)y/NK + (eMM + fM)

Furthermore, the matrices can be transposed. It implies that the parameters
a,M,b\i,--- are also different for each possibility of transposition. For DGEMM,
there are four possibilities thus, a total of 12 set of parameters.

Execution Time of a Level 3 BLAS Cut in L Blocks In the pipeline,
a BLAS 3 is computed in several times. What is its execution time when it is
cut in L sub-computations along the D dimension ? We assume that the blocks
must almost have the same width in order to have a regular pipeline. Choosing
a single size may penalize the pipeline efficiency because the last block may be
to large or to small. We prefer to choose two sizes that differ only by one.

Let r = DmodL. There will be L - r blocks of width [£J and r blocks of
width ["£]. Assuming that D = M, the execution time of a D-block level 3
BLAS cut in L blocks becomes:
T%t

LAS3(M,N,K,L) =

(L-r)[(aM [f J +bM)NK + (cM [f\ +dM)^NK + (eM [f\+fM)] +

r[(aM \f]+bM)NK + (cM\f] + dM)^NK + (eM \f] +/M)]

It gives after simplification:

TgLAS3{M,N,K,L) = (aMM+bML)NK+(cMM+dML)y/NK+{eMM+fML)

T&AS3(M,N,K,L) = L x T™LAS3(f,N,K)

Thus, the theoretical execution time of a level 3 BLAS split in L blocks is
a linear function of L. Meanwhile, experimental results show that it is partially
true. In fact, the BM„, &M„„,--- parameters are defined by intervals. Figure 5
gives the experimental execution time of a Mnn DGEMM, as a function of M.
We can see that there are at least two intervals ([2,11], [12,128]) in which the
parameters are different. For an accurate simulation, we define a lot of intervals
for small matrix sizes because a small number of floating operations does not
allow a good utilization of the arithmetic unit pipeline. But it very depends on
how the level 3 BLAS is implemented and which processor is used.

In order to compute parameters on a large number of intervals, we have
implemented a routine that produces sets of experimental curves for each BLAS
3, computes automatically the intervals and the parameters defined on, and
finally, outputs a C code containing array initializations.

Execution Time of a Pipeline The next step is to fix the optimal blocking
size L to determine the total execution time of each solution. In fact, there may

■682-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

00 120 140

Fig. 5. Execution time of a DGEMM as a function of dimension M.

be several pipelines for a single graph, like solutions 3 and 4 of the motivating
example. Thus, several optimal blocking sizes must be computed to obtain the
total execution time of the graph.

Fig. 6. Critical path.

For each pipeline, we define a critical task and a critical path. If there are TV
tasks in the graph, the critical path is an execution path in the Gantt diagram
which crosses N — 1 sub-tasks, the critical task and TV — 1 communications. A
general example is given in Figure 6. The bold line is the critical path. All the
dark gray blocks form the critical task which is the longest task in the pipeline
and is totally crossed by the critical path. We also assume that this task has
enough space for communication buffers, to avoid waiting to send a message
between its sub-task. For other tasks, only one of their sub-tasks is crossed by
the critical path. The length of the critical path gives the total execution time

■683-

FEUP - Faculdade de Engenharia da Universidade do Porto

of the pipeline.

From equations given in Section 4.2, we obtain the execution time of the
critical task and each sub-task crossed by the critical path. The sum of all gives
the execution time of the pipeline as a polynomial function of the blocking size L.
With a derivative, we find the optimal blocking size. Another way is to make an
exhaustive research of the optimal blocking size, testing all possible values of L.
The second method is longer but leads to better results because all parameters
are taken at the execution time. With a derivative, some parameters are removed.

5 Library Interface

With the optimal blocking size of each pipeline of each solution, we determine
the best solution and then, have all keys to implement an efficient pipeline.
Meanwhile, this implementation may be hard for someone who is not familiar
with the BLAS 3 syntax and communications libraries such as PVM, MPI or
BLACS. For a convenient use of our method, we have provided an interface
which handles at runtime and transparently the pipeline(s) of any linear task
graph of level 3 BLAS. It consists in 5 main routines that a user has to call. The
Table 2 gives the C code that implements a pipeline for motivating example.

NewPipe(5);
InitTask(0,DGEMM,P_nn,i,i,i,1.2,A,LDA,B,LDB,1.3,C,LDC,NO,MCC,NO)NO,0,l);
InitTask(l,DGEMM,P_nn,i,i,i,1.2,A,LDA,B,LDB,l-3,C,LDC,MA,MCC,0,0,0,2);
InitTask(2,DGEMM,P_nn,2*i,i,i,1.2,A,LDA,B,LDB,l-3,C,LDC,MB,MCC,0,l,0,3);
InitTask(3,DGEMM,P_nn,i,i,2*i>1.2,A,LDA,B,LDB,1.3,C,LDC,MB,MCC,0,2,0,4);
InitTask(4,DGEMM,P_nn,i,i,i,1.2,A,LDA,B,LDB,1.3,C,LDC,MA,N0,0,3,N0,N0);
InitPipeO ;
RunPipeO ;
FreePipeO ;

Table 2. Motivating example: C code to handle the pipeline at run-time.

The description of each task is done by InitTask(...) calls. Parameters are
the name of the BLAS 3, the matrices and their sizes, which matrices are sent,
... InitPipeO computes the best solution and the optimal blocking size(s).
RunPipeO execute the pipeline.

This interface has three advantages. First, it is very simple. The user just
have to describe the task graph. He does not need special knowledge on what
is a pipeline and how to implement it. The execution is also transparent and
no calls to communication routines is necessary. Secondly, it is portable. The
communications are based on the BLACS and the computations on the BLAS.
Finally, everything is handled at runtime. Thus, the initialization of the task
graph can dynamically parameterized.

■684-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

6 Experimental results

Our library gives solution 4 as the best solution for the motivating example.
This result is logical since tasks 3 and 4 work on larger matrices. It is obvious
that pipelining the biggest tasks together (solution 4) is more accurate than
pipelining them separately (solution 3).

In order to validate our method, we have also tested solution 3. Figure 7
presents the execution time of solutions 1 (no pipeline), 3 and 4, on our cluster
of Pentium, using the BLACS over MPI-LAM for communications. The time is
given for the optimal blocking size. Figure 8 shows the gain for solutions 3 and 4.
The gain is the execution time of these solutions divided by the execution time of
solution 1. It clearly shows that solution 4 is better than 3. Furthermore, a gain
greater than 2 can be reached despite the graph is broken into two pipelines.

40 — r , , T ■■ 2.2 , , , ,
35 2.1 ~ /''
30

25

20

15

no pipeline
with pipeline, solution 3
with pipeline, solution 4

c

en

1.9

1.8
1.7

1.6
/'

' solution 4
solution 3

10 /
1.5
1.4

5

0
..,.--'■

1.3
1.2

100 200 300 400 500
matrix size

600 7C 0 100 200 300 400 500 600 70
matrix size

Fig. 7. Motivating example: execution
time on a cluster of Pentium.

Fig. 8. Motivating example: gain on a
cluster of Pentium.

sequential (1 proc.)
pipeline

parallel (PBLAS)

100 200 300 400 500 600 700
matrix size

Fig. 9. Motivating example: comparison between sequential, parallel and pipeline ex-
ecution time on a cluster of Pentium (POPC).

In Figure 9, we give a comparison between three different execution times
on the cluster of Pentium. The first one is the purely sequential time: only one
processor computes the five DGEMM. The second one is the pipelined version time.
The last one is the purely parallel time: no pipeline but all processors computes
each BLAS 3 with a PBLAS routines.

•685-

FEUP - Faculdade de Engenharia da Universidade do Porto

We notice that the pipelined version is less efficient than the PBLAS version.
It clearly shows that breaking the task graph into several pipelines decreases
performances. Meanwhile, the PBLAS approach has two drawbacks. First, it is
not so easy to use and requires some advanced knowledge in message passing
implementation style. Secondly, it is more complicated to distribute the matrices.
Also, our method is a good compromise between efficiency and ease of use.
Moreover, our pipeline strategy is more efficient when the chain of task is already
mapped on the processors, due to previous computations. This is the case for
example when pipelining the kernel of a sparse matrix factorisation [5,7]. Dense
blocks are already mapped on the processors and we would like to pipeline the
updates. Our method can easily be used in this case.

We have also tested our method on other examples and machines (Paragon,
cluster of PowerPC,...). For example, with 5 identical DGEMM, we reach a gain
of 3.85, on the cluster of Pentium. More generally, we have noticed that such
a graph (identical BLAS with a single pipeline) with n tasks always leads to a
gain near form n - 1 (which is indeed optimal).

sequential (1 proc.)
pipeline

parallel (PBLAS)

200 400 600 800 1000
matrix size

200 400 600
matrix size

Fig. 10. 5 identical DGEMM: gain on clus- Fig. 11. 5 identical DGEMM: compari-
ters of Pentium (POPC) and PowerPC son between sequential, parallel and
(POM). pipeline execution time on a cluster of

Pentium (POPC).

In Figure 11, we give a comparison between sequential, pipeline and parallel
execution times (as in Figure 9). This time, the pipeline version is as efficient as
the parallel version and much more than a sequential execution. This result is
identical for other tests with a single pipeline even if there are different BLAS 3
in the graph. It proves that our method is as efficient as PBLAS/ScaLAPACK
in such cases.

7 Using our Approach in a Data-Parallel Programs

We have seen in Figures 9 and 11 that pipelining is always better than doing
computations sequentially on a single processor. Meanwhile, the parallelism (im-
plicitly, the number of processors) strictly depends on the number of tasks in the
graph. It seems to be a limitation if we consider that the problem size may in-
crease beyond the resource of the processors. This is not a problem for a PBLAS

-686-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

computation since we can use a variable number of processors. In fact, the dy-
namical behavior of our method allows to mix it with data-parallelism. Especially
in block algorithms, there are dependencies between sequential computations on
different processors. In some case, these dependencies can be expressed as a set
of linear graph of task and each graph uses a separate set of processor. For
example, we can construct a block algorithm with such dependencies for the
multiplication of two matrices, distributed by block (cyclic or not) on a grid of
processor. In all these cases, our method can be used whatever the number of
processors is since our interface allows to define the graph dynamically.

We have implemented the matrix multiplication algorithm and compared it
to that proposed in the PBLAS: PDGEMM. It uses a simple full-block distribution
vs. block scattered for PDGEMM). The algorithm is nearly similar to the PDGEMM
routine except that we replace the broadcast at the beginning of each step by a
pipeline for each processor on the same row. Thus, all processors are working on
the same amount of data and it leads to a perfect load balance. If the blocking
size is well chosen, the idle time due to contentions is minimal.

Fig. 12. Execution time of PDGEMM and
the pipelined matrix multiplication on
16 processors of the Paragon.

Fig. 13. Gain of the pipelined matrix
multiplication over PDGEMM.

First, we notice in Figure 12 that the execution time of PDGEMM is not perfectly
cubic. This comes from a slight load imbalance for some matrix sizes. Our version
does not have this problem and thus, gives largely better execution time in these
cases.

Secondly, our routine has always better results for large matrices. For such
matrices, the average gain of our routine, given in Figure 13, is 7%. In fact,
there are a lot of broadcast and global sum communications in PDGEMM and the
processors are often idle. In our routine, there are only four steps of computations
(4x4 processors), thus only four global sum and three pipeline phases. During
these phases, the processors are communicating while they are computing: there
are less idle than in PDGEMM.

•687-

FEUP - Faciddade de Engenharia da Universidade do Porto

8 Conclusion

In all cases, the experimental results have confirmed the usefulness and efficiency
of the pipeline in tasks graph over a sequential execution. With asynchronous
communications, the total execution time of the graph can be reduced by two or
even more, depending on the size of the graph and the dependencies between the
tasks. Moreover, experimental results have validated our methods to compute
the set of best blockings and the optimal blocking size. When the dependencies
leads to a single pipeline, our method gives a code as efficient as a message
passing approach but much easier to implement. Ten lines of code are sufficient,
against hundred for a PBLAS/ScaLAPACK code.

Finally, some real applications can be optimized by our method. We have
already give some of them in the introduction but it also works each time the
dependencies between sequential computations produce a set of linear graph of
tasks, with each graph working on different processors.

Our future work is the validation of our method in a sparse matrix factorisa-
tion by pipelining the block updates using level 3 BLAS routines and to extend
the algorithm to non-linear task graphs.

References

1. Z. Bai and J. Demmel. Design of a Parallel Nonsymmetric Eigenroutine Toolbox
- Part I. In SIAM, editor, Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, 1993.

2. J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing Matrix Multiply
Using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodology. In
Proceedings of the International Conference on Super computing, Vienna, Austria,
July 1997. ACM SIGARC.

3. S. Chakrabarti, J. Demmel, and K. Yelick. Models and Scheduling Algorithms
for Mixed Data and Task Parallel Programs. Journal of Parallel and Distributed
Computing, 47:168-184, 1997.

4. M.J. Dayde, IS. Duff, and A. Petitet. A Parallel Block Implementation of Level 3
BLAS for MIMD Vector Processors. Technical Report RT/APO/93/1, ENSEEIHT
- Departement Informatique N7 -I.R.I.T. Gpe Algorithmes Paralleles, 1992.

5. J.W. Demmel, J.R. Gilbert, and X.S. Li. An Asynchronous Parallel Supernodal
Algorithm for Sparse Gaussian Elimination, February 1997. [Available via ftp in
ftp: //parcf tp. xerox. com/pub/gilbert/parlu. ps. Z].

6. J.J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans, on Mathematical Sofl., 16(1):1-17, 1990.

7. A. Gupta, F. Gustavson, M. Joshi, G. Karypis, and V. Kumar. Design and Imple-
mentation of a Scalable Parallel Direct Solver for Sparse Symmetric Positive Definite
Systems. In Proc. of the 8th SIAM Conf. on Parallel Processing, March 1997.

8. B. Kägström, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS: High Perfor-
mance Model Implementations and Performance Evaluation Benchmark. Technical
Report UMINF-95.18, Urnea University, October 1995.

9. R. Whaley and J. Dongarra. LAPACK Working Note 131: Automatically Tuned
Linear Algebra Software. Technical Report CS-97-366, The Universtity of Tennessee
- Knoxville, 1997. http://www.netlib.org/atlas/.

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Parallel Algorithm for Solving the Toeplitz
Least Squares Problem*

Pedro Alonso1, Jose M. Badfa2, and Antonio M. Vidal1

1 Dpto. de Sistemas Informäticos y Computation, Univ. Politecnica de Valencia,
Cno. Vera s/n, 46022 Valencia, Spain

{palonso, avidal}Qdsic.upv.es
2 Dpto. de Informätica, Univ. Jaume I, Castellön, Spain

badiaQinf.uj i.es

Abstract. In this paper we present a parallel algorithm that solves the
Toeplitz Least Squares Problem. We exploit the displacement structure
of Toeplitz matrices and parallelize the Generalized Schur method. The
stability problems of the method are solved by using a correction pro-
cess based on the Corrected Semi-Normal Equations [8]. Other problems
arising from parallelizing the method such as the data dependencies and
its high communication cost have been solved by using an optimized dis-
tribution of the data, rearranging the computations and designing new
basic parallel subroutines. We have used standard tools like the ScaLA-
PACK library based on the MPI environment. Experimental results have
been obtained in a cluster of personal computers with a high perfomance
interconnexion network.

1 Introduction

Our goal is to solve the Least Squares (LS) problem

min||Tx-6||2, (1)
X

where the matrix T € Rmx™ is Toeplitz, Tij = U-j £ R for i — 0,..., m — 1 and
j = 0,..., n — 1, and for an arbitrary vector b £ Rm, in a parallel computer.

This problem arises in many applications such as time series analysis, image
processing, control theory, statistics, in some cases with real-time constraints
(e.g. in radar and sonar applications).

It is well known that the LS Problem can be computed in 0(mn2) flops in
general, using e.g. Householder transformations [10]. But, for a Toeplitz matrix
T, several fast algorithms of 0(mn) flops exist [13,6]. All these fast algorithms
are generalizations of a classical algorithm by Schur [12]. However, the stability
properties of the fast algorithms are inferior to those of the standard L APACK [3]
algorithm based on Householder transformations. A good overview of the stabil-
ity and accuracy of fast algorithms for structured matrices can be found in [4].

* Partially funded by the Spanish Government through the project CICYT TIC96-
1062-C03.

-689-

FEUP - Faciddade de Engenharia da Universidade do Porto

In this paper, we will use several enhancements that make the fast algorithm
based on the Generalized Schur Algorithm more accurate and reliable. The par-
allel algorithm that we have implemented is based on a sequential one proposed
by H. Park and L. Eiden [8]. In that paper the accuracy of the R factor com-
puted by the Generalized Schur Algorithm is improved by post-processing the R
factor using Corrected Semi-Normal Equations (CSNE). Our parallel algorithm
inherits the accuracy properties of that method.

Assume that the matrix R0 6 R(n+1>x("+1) js the upper triangular submatrix
in the f?-factor of the QR decomposition for the matrix [b T],

Äo = qr([6T])= (*"*) , KER, UJ e Rnxl ,G 6 Rnxn , (2)

where G is upper triangular and with the operator qr we denote the upper square
submatrix of the R factor of the QR decomposition of a given matrix. Then, the
LS problem (1) can be solved via a product of Givens rotations J that reduces
a Hessenberg matrix to de upper triangular form,

where R £ Rnxn is the upper triangular factor of the QR decomposition of T.
The vector solution x (1) is obtained by solving the triangular linear system
Rx = n [10].

Solving the LS problem (1) involves four main steps that we summarize in
Algorithm 3 in section 5. The first one is to form a generator pair (which we will
explain further on). Starting from the generator pair, we obtain the triangular
factor G which appears in (2) by means of the Generalized Schur Algorithm. The
third step consists of refining that factor G in order to acquire a more accurate
factor G, and the last step is an ordinary solution of a triangular system that
solves the LS problem (1) as made in the standard method for solving a general
LS problem via a QR decomposition of the augmented matrix [T b].

We have parallelized the four steps. The second step is described in section 2
while the third one is described in sections 3 and 4. With the parallel version of
the Generalized Schur Algorithm proposed here, we can reduce the time needed
to obtain the triangular factor G and we obtain a parallel kernel available to
other problems based on this method (e.g. linear structured systems see [1,2]).
With the parallel version of the third step we can aliviate the overcost introduced
by the correction step needed to obtain a more accurate solution in the case of
non strongly regular matrices.

Several problems arise in the development of the parallel version of the
method. First, the difficulty in obtaining high parallel performance from a low
cost algorithm. Second, the sequential algorithm has a lot of data dependencies
as in many other fast algorithms that work on structured matrices. This fact
reduces drastically the granularity of the basic computational steps, so increases
the effect of the communications. However, we have reduced the effect of these
problems by using an appropriate data distribution, rearranging the operations

■690-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

carried out in order to reduce the number of messages, and implementing new
efficient basic parallel subroutines adequate to the chosen data distribution.

We have implemented all algorithms in FORTRAN, using BLAS and LA-
PACK libraries for the sequential subroutines, the PBLAS and ScaLAPACK [9]
libraries for solving basic linear algebra problems in parallel and for data distri-
bution. The utilization of standard libraries assures portability and produces a
parallel program based on well known and efficient tested public code. We have
used subroutines of the BLACS package over MPI [7] to perform the communi-
cations. As it is shown bellow, the best topology to run the parallel algorithm is
a logical grid of p x 1 processors.

2 Exploiting the Displacement Structure

The displacement of the matrix [b T]T[b T] with respect to the shift matrix
Z = [z]":=0, where z = lifi=j + l and z = 0 otherwise, is denoted by V' z
and defined as

Vz = [bTf[bT}-Z[bT]T[bT]ZT = GJQT . (4)

The matrix [b T]T[b T] has low displacement with respect to Z if the rank of
Vz is considerably lower than n [11]. The factor Q is an n x 6 matrix called
generator, and J is the signature matrix (I3 © —I3). The pair {G,J) is called a
generator pair. Given a general Toeplitz matrix T and an arbitrary independent
vector b, the generator pair for equation (4) is known [8], and is computed at
the first step of the parallel Algorithm 3 to solve the least squares problem (1).

The Generalized Schur Algorithm computes the factor i?o (2) of the following
Cholesky decomposition,

[b Tf[b T] = RlR0 ,

in 0{mn) flops instead of the 0(mn2) flops required by the standard LAPACK
algorithm. The Generalized Schur Algorithm is a recursive process of n steps.
In step i (i = 1,... ,n), a J"-unitary transformation 0; {OiJOj = J) is com-
puted in order to transform the first nonzero row of Q to a vector of the form
(x 0 0 0 0 0). The first column of generator Q is the i row of the Cholesky tri-
angular factor of the matrix [b T]T[b T}. Each J'-unitary transformation is per-
formed by a composition of two Householder transformations and a hyperbolic
rotation [5].

In the parallel version of the Generalized Schur Algorithm that we present,
the generator G is divided in blocks of v rows and cyclically distributed over a
p x 1 processors grid as it is shown in Fig. 1. The processor having the i row
of G (first nonzero row of the generator denoted by the x entries) computes
the jT-unitary transformation and broadcasts it to the rest. The rows from i to
n of the generator are updated in parallel. Afterwards, the nonzero entries of
the distributed first column of G are copied on to the i-th column (entries 1;)
without communication cost. When the n steps have been executed, we will have

691

FEUP - Faculdade de Engenharia da Universidade do Porto

000000 li 0 0 000000000000000
P0 0 0 0 0 0 0 li 12 0 000000000000000

000000 li 12 13 000000000000000
xxxxxx I1I2I3 000000000000000

xxxxxx I1I2I3 000000000000000
PI xxxxxx I1I2I3 000000000000000

xxxxxx I1I2I3 000000000000000
xxxxxx 1:12 13 000000000000000
xxxxxx I1I2I3 000000000000000

P2 xxxxxx I1I2I3 000000000000000
xxxxxx I1I2I3 000000000000000
xxxxxx I1I2I3 000000000000000

xxxxxx I1I2I3 000000000000000
P0 xxxxxx I1I2I3 000000000000000

xxxxxx I1I2I3 000000000000000
xxxxxx I1I2I3 000000000000000

xxxxxx I1I2I3 000000000000000
PI xxxxxx I1I2I3 000000000000000

Fig. 1. Block row cyclic distribution of an example generator G of size 18 x 6 (entries
x) and a 18 x 18 lower triangular factor L (entries It) obtained by the Generalized
Schur Algorithm, with a block size ofv=4 rows over a 3 x 1 processor grid. The figure
shows the distributed workspaces after the step 3.

the upper triangular R factor transposed of the QR decomposition of the matrix
[b T] distributed over all processors.

Finally, in each step, the first column of generator Q has to be shifted one
position down. This last operation involves a critical communication cost with
respect to the small computational cost of each iteration. Each processor has to
send one element per block to the next, and it has to receive a number of messages
equal to the number of blocks of the previous one. This implies a point to point
communication of several messages of one element. In our parallel algorithm,
each processor packs all the elements in one message. The destination processor
receives it, unpacks the scalars and puts them into the destination blocks. In
Fig. 2 we show the parallel shift process. The total number of messages is reduced
from 0(^-) to 0{pn) and, therefore, the global latency time is also reduced.

3 Improving the Accuracy of the Method

When the R factor in (3) is ill-conditioned, we can expect a large error in the
matrix G computed by Generalized Schur Algorithm. Therefore, we need to
apply the correction step proposed in [8] in order to refine the R factor obtained
by the Generalized Schur Algorithm described above.

692-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 2. Shift of elements 3 to 20 of a vector of 24 elements distributed on a 3x1
processors grid. The size of block is v—3.

We assume the following partition of the Toeplitz matrix T

■T
r

fcT0

rp _ \ to Jr | _ To lc

lT t

where T0 € R(™-D*("-D is a Toeplitz submatrix of T, fr, lT € R(n_1)xl, and

Indeed, we assume a partition of the matrix composed of the factor G and
the vector UJ in (2),

L)

G gn 9r = \ Gt gc (5)
0 Gb 0 gnn ,

where Gb,Gt 6 R(" 1)x(n 1], gr,gc,ub,u)t £R{n 1,xl, gn,gnn, wi,w„ € R, and
define matrix G € R^-Dxl""1) such as

GTG = GjGt + utuj + frfj . (6)

It can be shown that the matrix G is the upper triangular R factor of the QR
decomposition of matrix X,

G = qr(A'), X = I T0] € R(m+1)x("_1) • (7)

-693-

FEUP - Faculdade de Engenharia da Universidade do Porto

Basically, the refinement step proceeds as follows. First of all, we have to
find an orthogonal matrix WT which transforms the first two columns of [b T]
to upper triangular form and, accordingly, the first two rows into

K U)\ u^

Ogug?l- (8)

We define a matrix W\ as

* = (;■?■?). (»)

where w\ and w2 denote the first and second columns of matrix W.
Once the factor Gt (5) has been obtained from the Generalized Schur Algo-

rithm, the matrix G is computed by updating Gt via Givens rotations. Then, a
refined matrix Gt (5) is obtained by downdating the block H from G,

GjGb = GTG - HTH ,

where HT = (lr gr uh) € R^"1'*3 .
The downdating process is performed by solving the LS problem

ndn\\Wi-XV\\F, (10)

with the Corrected Semi-Normal Equations method (CSNE).
Once the LS problem (10) is solved, we obtain an orthogonal matrix Q} £

R(n-i)x3 and an upper triangular matrix F € R3x3, and we construct the fol-
lowing matrix

'* t), du
that we have to triangularize by a product of Givens rotations M,

in order to obtain the refined factor Gb and, therefore, a more accurate R factor
of the QR decomposition of the matrix T.

All steps described above can be summarized in the following algorithm.

Algorithm 1 (CSNE Refinement Step).
Let Gt denote the triangular factor (5) computed from the Generalized Schur

Algorithm, and W\ the matrix defined in (9) and let X from (7), the refinement
step proceeds as follows:

1. Compute G triangularizating {Gj uf fr).
2. Compute Q1; V* and F from

GTQl = XTW, , GV = Q1 , F:= K\ - XV .

-694-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

3. (a) Update Qi, V, and F:

GTQ[= XTF , Qx := Q, + Q[,

GV = Q[, F:=F- XV .

4- Triangularize I * 1 by a product of Givens rotations M:

(b) Compute the upper triangular factor T of the QR decomposition of F.
QiG
r o,

o R) \r o
The computational complexity of the Generalized Schur Algorithm and the Re-
finement Step of Algorithm 1 is 13mn + 24.5n2 flops [8].

4 The Parallel Refinement Step

With the correction step proposed in [8] we have an overcost in the global algo-
rithm to solve de LS problem that we can aliviate using parallelism. The keys to
obtain a good parallel version of the correction process are, first, an adequate dis-
tribution of the involved data and. second, the construction of new appropriate
parallel computational kernels to solve each step of the algorithm.

A cyclic row block of size v (v must be greater of equal to 3 ever) distribution
have been used (Fig 3). The workspace proposed is divided into two distributed
sub-workspaces: the generator, the entries of which are denoted by G and the
rest, which entries q and T denote the entries of the matrices Q\ and r (11)
once they have been calculated and before applying transformation M (12). The
entries G denote the triangular factor obtained by the Parallel Generalized Schur
Algorithm that will be updated later in order to obtain the factor G defined in
(6). The rest of the entries are distributed matrices for auxiliar purposes as it is
described in Algorithm 2. Indeed, a local workspace called F of size (m+l)x3
is used by each processor.

Algorithm 2 (Parallel Refinement Step).
Given the triangular factor Gj computed on workspace 6 (Fig. 3) by the Parallel
Generalized Schur Algorithm and a matrix W\ (9) replicated on local workspace
F in all processors, this algorithm obtains the refined triangular factor Gf (5)
arising in entries G& of workspace shown in Fig. 4-

1. Update the distributed factor G by triangularizating the distributed matrix
(8 Ai A2), where columns Aj and A2 (first two columns of workspace k) have
u>t and fr respectively, by parallel Givens rotations in order to form the
triangular factor GT (6).

2. (a) Compute A := A'TF. All processors know matrix X because it is not
explicitly formed, and have matrix W\ replicated on the local workspace
F. Each processor can calculate its local blocks of the distributed matrix
A without communications.

-695-

FEUP - Faculdade de Engenharia da Universidade do Porto

000000 qqqqqqqqT000000 0
P0 000000 qqqqqqqqrrOOOOOO

000000 qqqqqqqqrrrOOOvi v2
GGGGGG G0000000AAABBBviV2

GGGGGG GG000000AAABBBviv2

PI GGGGGG GGG00000AAABBBviv2

GGGGGG GGGG0000AAABBBviv2

GGGGGG GGGGG000AAABBBviv2

GGGGGG GGGGGG00AAABBBv!V2

P2 GGGGGG GGGGGGG0AAABBBviv2

GGGGGG GGGGGGGGAAABBBviv2

Fig. 3. Parallel workspace for refinement step over a 3x1 processors grid. The size of
block is 4- Matrices are stored in memory in transposed form.

(b) Solve the triangular linear system A :~ G_1A in parallel.
(c) Solve the triangular linear system A := G~TA in parallel.
(d) Perform the operation F := F - ArA. Each processor Pk calculates locally

a factor Fk, k = 0,... ,p - 1 and. by a global sum F := YllZo Fk, all
processors will have the factor F replicated after this step.

3. Save factor A into B.
4- (a) i. Compute A := XTF. Each processor can calculate its local blocks of

the distributed matrix A without communications,
ii. Solve the triangular linear system. A := 5_1A in parallel,

iii. Update factor B, B := B + A.
iv. Solve the triangular linear system A := G~TA in parallel,
v. Perform the operation F := F - Xk. Each processor Pk calculates lo-

cally a factor Fk, k = 0,... ,p-l and, by a global sum F := YTk=o Fk>
the factor F. In this case, only the processor P0 will have the resulting
factor F of the global sum.

(b) If Pk = Po, calculate triangular factor F of the QR decomposition of V
and copy it transposed on entries denoted by T in Fig. 3.

5. (a) Redistribute factor B to entries denoted by q in Fig. 3. These entries are
owned by processor P0 always because in the distribution chosen v>Z.

(b) Set the entries A to zero and triangularize the workspace formed by en-
tries q. T, G and A, the matrix defined in (12) in transposed form, by a
product of parallel Givens rotations M in order to obtain the triangular
factor G&. The result of this operation can be seen in Fig. 4.

Solving the Refinement Step in parallel by Algorithm 2 involves several basic
computations that we summarize below:

- Two matrix-matrix multiplications of the matrix XT (7) by the local work-
space F. These computations are performed in parallel without communica-
tions because matrix X is not explicitly formed and the second matrix is
local and replicated in all processors.

696-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

00000 0 10000000 0 0 0 000 0 0

PO 000000 01000000 0 0 0 0 0 0 0 0

000 000 00100000 0 0 0 0 0 0 vi v2

0 00000 HHHGfcO 0 0 0 0 0 0 B B B vi V2

000000 H H H Gb Gb 0 0 0 0 0 0 B B B vi v2

PI 000000 H H H Gf, Gb Gb 0 0 0 0 0 BBBvi V2

000000 H H H Gb Gb Gb Gb 0 0 0 0 B B B vi v2

000000 H H H G6 Gt, G6 Gf, G6 0 0 0 B B B vi V2

0 0 0 0 0 0 H H H Gf, G6 Gb Gb Gb Gb 0 0 B B B vi v2

P2 0 0 0 0 0 0 H H H Gb Gb Gb Gb Gb Gb Gb 0 B B B vi v2

0 0 0 0 0 0 H H H Gt Gb Gb Gb Gb Gb Gb Gb B B B vj v2

Fig. 4. Parallel workspace of Fig. 3 after the refinement step has been carried out.

- Three triangular linear systems involving the distributed matrix denoted in
Fig. 3 with entries G and the distributed matrix denoted with entries A. We
have applied the corresponding PBLAS routines to perform these operations
in parallel.

- Two matrix-matrix multiplications involving the matrix X and the dis-
tributed matrix A. Each processor computes a summation and, by means
of a global sum, the result is distributed over all processors in the first case,
or only stored on processor Po in the second one.

- Several parallel Givens rotatios appearing in steps 1 and 5b. This steps have
been performed by blocks in order to minimize the number of messages
needed to broadcast the Givens rotations.

The main problem of the previous algorithm is the large number of different
basic computations to perform and the number of different matrices and vectors
involved. We have distributed all data in order to optimize the different steps and
to minimize the communication cost. Standard routines from ScaLAPACK and
PBLAS have been used for matrix distributions and solving distributed triangu-
lar linear systems. For matrix-matrix multiplications and for triangularization of
workspaces with Givens rotations described above we have implemented several
specific routines to solve these basic tasks. A more detailed description of these
last computational kernels can be seen in [2].

5 The Parallel Algorithm

In this section we show a very summarized version of the whole parallel al-
gorithm. Step 2 of Algorithm 3 corresponds to the Parallel Generalized Schur
Algorithm described in section 2, while step 3 corresponds to the Refinement
Step described in the previous one.

Algorithm 3 (Parallel Algorithm for the Toeplitz LS Problem).
Given a Toeplitz matrix T € Rmxn and an arbitrary vector b £ Rm, this algo-

■697-

FEUP - Faculdade de Engenharia da Universidade do Porto

rithm computes in parallel the solution vector x € R" of the LS Problem (1) in
a stable way.

1. Compute values K, UJ and g = (gn gj) (8) by a QR decomposition of the
first two columns of [b T]. Save u in the distributed workspace vi and g in the
distributed workspace v2 (Fig. 3). Form the generator Q of the displacement
matrix V'z (4) distributed over the workspace denoted by entries G in Fig. 3.

2. Compute the triangular factor Gt 6 i^"-1)**"-1) (5) 0n to the distributed
workspace 5 using the Parallel Generalized Schur Algorithm described in sec-
tion 2.

3. Compute the triangular factor Gf, € #<"-!)xf"-1) fgj on f0 workspace Gt
(Fig. 4) applying the parallel Refinement Step described in section 4-

4- Using the scalar K, the vectors to and g stored on vi and v2 respectively, and
the refined factor G&, compute the operation described in (3) via a product
of parallel Givens rotations J and solve the triangular linear system Rx = b
in parallel (using PBLAS) in order to obtain the vector solution x of the LS
problem (1).

6 Experimental Results

First of all, we have tested our parallel algorithm by using the matrices proposed
in [8], concluding that the parallel version preserves the stability properties of
the sequential algorithm.

In this section we show the experimental results we have obtained with our
parallel algorithm using a cluster of 32 personal computers with a Pentium II
microprocessor connected through a Myrinet network using point to point com-
munications. This environment has a good relation between computation and
communication cost and also between prize and performance. Besides, this type
of multicomputer can be easily actualized and it allows the use of standard
libraries like MPI and ScaLAPACK over the Linux Operating System.

In Table 1 we compare the results of our parallel algorithm with PDGELS, a
parallel routine for solving the general least squares problem included on the
ScaLAPACK library. We can see that efficiency of PDGELS is better, but time is
worst because the algorithm included in ScaLAPACK does not have into account
the structure the Toeplitz matrices.

We also show time and efficiency of Algorithm 3 with matrices of different
sizes and relations between m and n versus different number of processors (Ta-
ble 2). All the results are obtained using the best block size (v) in each case.
We can observe that, while there is a good efficiency with a few processors, this
factor decreases when the number of processors increases. Indeed, the results
improve when we increase the size of the matrices and when m » n (Fig. 5).
This behaviour of the parallel algorithm is due, mainly, to the low computational
cost of the sequential algorithm. We are trying to parallelize and algorithm that
exploits the special structure of the Toeplitz matrices and that reduces the cost
from 0(mn2) to 0{mn). It is widely known that in a distributed system, a

•698-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 1. Comparison between PDGELS routine and Algorithm 3. Table shows time in
seconds and efficiency for 1, 2, 4, 8 and 16 processors. The best block size and logical
grid have been used for PDGELS routine.

Algorithm 3

m x n 1 2 4 8 16

1000 x 100
1000 x 500

1000 x 1000

0.143
0.868
2.144

0.105
0.674
1.715

68%
64%
62%

0.086
0.463
1.173

42%
47%
46%

0.075
0.407
0.988

24%
26%
27%

0.083
0.341
1.016

11%
16%
13%

PDGELS routine from ScaLAPACK

m x n 1 2 4 8 16

1000 x 100
1000 x 500

1000 x 1000

0.272
3.121
8.010

0.162
1.838
5.272

84%
85%
76%

0.112
1.263
3.725

61%
62%
54%

0.104
0.923
2.301

33%
42%
43%

0.104
0.778
1.650

16%
25%
30%

very important factor to obtain good performance is to reduce the communica-
tion cost and/or, at least, to increase the relation between computational and
communication costs. In the case of a sequential algorithm with so small com-
putational cost, any communication introduced in the parallel version has an
enormous effect.

Table 2. Parallel results in time (seconds) and efficiency for several Toeplitz matrices
of different number of rows and columns.

m x n 1 2 4 8 16

1000 x 100
1000 x 500

1000 x 1000

0.143
0.868
2.144

0.105
0.674
1.715

68%
64%
62%

0.086
0.463
1.173

42%
47%
46%

0.075
0.407
0.988

24%
26%
27%

0.083
0.341
1.016

11%
16%
13%

2000 x 200
2000 x 1000
2000 x 2000

0.600
3.630
9.225

0.383
2.555
6.893

78%
71%
67%

Q.249
1.580
4.151

60%
57%
55%

0.196
1.223
3.124

38%
37%
37%

0.178
1.068
2.922

21%
21%
20%

In order to perform a more detailed analysis, we offer the impact of in-
triducing the Refinement Step in the parallel algorithm. In Table 3 we show
the Generalized Schur Algorithm cost separate from the Refinement Step cost.
We can see that the sequential cost of the Refinement Step is so much higher
than the cost of the Generalized Schur Algorithm. Therefore, there is a better
opportunity of obtaining parallel speedup during the Step 3 of the Algorithm 3.
The parallelization of the Generalized Schur Algorithm offers worse results due
to the greater influence of the communications than the parallelization of the
Refinement Step as we increase the number of processors. The necessity of broad-

699-

FEUP - Faculdade de Engenharia da Universidade do Porto

casting the transformation factors on each iteration and the displacement of the
first column of the generator involves a large communication cost related to the
very small computational cost of applying the transformations.

Table 3. Comparison of time in seconds and efficiency between Step 2 and Step 3 of
Algorithm 3.

m x n 1 2 4 8 16

2000 x 200 Schur
Refi.

0.016
0.522

0.028
0.331

29%
79%

0.030
0.199

13%
65%

0.036
0.147

6%
44%

0.043
0.123

2%
27%

2000 x 1000 Schur
Refi.

0.401
2.915

0.296
1.817

68%
80%

0.249
1.050

40%
69%

0.245
0.718

20%
51%

0.257
0.579

10%
31%

2000 x 2000 Schur
Refi.

1.583
6.909

0.972
4.382

81%
79%

0.694
2.542

57%
68%

0.602
1.739

33%
50%

0.579
1.370

17%
32%

In order to fully exploit the parallel system, we have also analyzed the influ-
ence of scaling the problem with the number of processors. Specifically we have
used a isotemporal scale, increasing the size of the problem in order to maintain
the temporal cost of the parallel algorithm. The cost of the problem is 0(mn),
so we have scaled both factors, m and n, with the square root of the number of
processors. In Fig. 5 we show the scaled speedup that we have obtained in the

Scaled Speed Up

Processors

Fig. 5. Scaled Speed Up of isotemporal cost of different example matrices varying in
the relation between m and n.

■700-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

case of matrices with a different relation between m and n. Specifically we show
the results with square matrices (m = n). with matrices in which m = In and
with very rectangular matrices (TO = lOn). In all cases, we start with a matrix in
which n = 400 in the sequential case. The results are not close to the optimum,
but we obtain scaled speed up greater than 10 with 32 processors. Given de
specific characteristics of the parallelized algorithm, this is a good result.

The figure also shows that we obtain better results with rectangular matri-
ces than with square matrices. This behaviour of the algorithm shows that the
computation cost of the parallel algorithm depends on both factors, m and n,
while the communication factor increases mainly with n. Indeed, during the first
phase of the algorithm the communications only depend on n.

7 Conclusions

In this paper we have presented a new parallel algorithm for solving the least
squares problem with Toeplitz matrices. This algorithm exploits the special
structure of this class of matrices in order to reduce the cost obtaining the
solution of the problem and is mainly based on the parallelization of the method
presented in [8].

We have parallelized the two main phases of the method: the Generalized
Schur Algorithm and the refinement process to obtain a more accurate re-
sult. The parallel algorithm maintains the stability properties of the sequen-
tial method and, therefore, offers a similar accuracy than using the QR method
based on Householder transformations. The parallel algorithm has been devel-
oped using a standard environment, thus producing a portable code to different
parallel environments. We have used the ScaLAPACK library based on the MPI
message-passing library. However, the specific characteristics of the algorithm
does not allow fully exploit the bidimensional parallel model of the ScaLAPACK
library. The second step of the Algorithm 3 is based on the transformation of
the generator of the Toeplitz matrix that has n — 1 rows, but only six columns.
Therefore, we had had to use a unidimensional grid in order to approach this
phase of the algorithm. During the Refinement Step we have tried to reduce the
communication cost by using an appropriate workspace and we have combined
ScaLAPACK routines with other routines designed specifically to approach the
different stages of the refinement. In order to apply the Givens rotations it is
suitable to use the same logical grid of p x 1 processors. An experimental anal-
ysis has been carried out in a cluster of personal computers based on a high
performance interconnection network. The results show good efficiencies with a
reduced number of processors, but they are not so good when we use a large
number of processors. The main reason of this behaviour is the very small com-
putational cost of the algorithm that we have parallelized. However, as we have
shown, time of Algorithm 3 is less than the corresponding of standard routine
and, using the parallel algorithm proposed, the impact in the computational cost
of the correction post-process is reduced.

■701 -

FEUP - Faciildade de Engenharia da Universidade do Porto

References

1. Pedro Alonso, Jose M. Badia, and Antonio M. Vidal. Un algoritmo paralelo es-
table para la resolution de sistemas de ecuaciones toeplitz no simetricos. In Adas
del VI Congreso de Matemätica Aplicada (CMA), Las Palmas de Gran Canaria,
volume II, pages 847-854, 1999.

2. Pedro Alonso, Jose M. Badia, and Antonio M. Vidal. Algoritmos paralelos para
la resolution de sistemas lineales y del problema de mmimos cuadrados para ma-
trices toeplitz no simetricas. Informe Interno (Technical Report) II-DSIC-2/2000,
Universidad Politecnica de Valencia, January 2000.

3. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
Users' Guide. SI AM, Philadelphia, second edition, 1995.

4. Richard P. Brent. Stability of fast algorithms for structured linear systems. In
T. Kailath and A. H. Sayed, editors, Fast Reliable Algorithms for Matrices with
Structure, pages 103-116. SIAM, 1999.

5. S. Chandrasekaran and Ali H. Sayed. A fast stable solver for nonsymmetric Toeplitz
and quasi-Toeplitz systems of linear equations. SIAM Journal on Matrix Analysis
and Applications, 19(1):107-139, January 1998.

6. J. Chun, T. Kailath, and H. Lev-Ari. Fast parallel algorithms for QR and triangular
factorization. SIAM Journal on Scientific and Statistical Computing, 8(6):899-913,
November 1987.

7. Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The MPI message passing
interface standard. Technical report, University of Tennessee, Knoxville, Tennessee,
March 94.

8. L. Eiden and H. Park. Stability analysis and fast algorithms for triangulariza-
tion of toeplitz matrices. Technical Report LiTH-MAT-R-95-16, Department of
Mathematics, Linköping University, 1995.

9. L. S. Blackford et al. ScaLAPACK: A portable linear algebra library for distributed
memory computers — design issues and performance. In ACM, editor, Supercom-
puting '96 Conference Proceedings: November 17-22, Pittsburgh, PA, New York,
NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA.
1996. ACM Press and IEEE Computer Society Press.

10. Gene H. Golub and Charles F. Van Loan. Matrix Computations, volume 3 of Johns
Hopkins Series in the Mathematical Sciences. The Johns Hopkins University Press,
Baltimore, MD, USA, second edition, 1989.

11. Thomas Kailath and Ali H. Sayed. Displacement structure: Theory and applica-
tions. SIAM Review, 37(3):297-386, September 1995.

12. J. Schur. Über Potenzreihen, die im Innern des Einkeitskreise beschänkt sind.
Journal für die reine und angewandte Mathematik, 147:205-232, 1917.

13. D. R. Sweet. Fast Toeplitz orthogonalization. Numerische Mathematik, 43(1):1-21,
1984.

■702-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Parallel Preconditioning of Linear Systems
Appearing in 3D Plastic Injection Simulation

D. Guerrero, V. Hernandez. J. E. Roman, and A. M. Vidal

Departamento de Sistemas Informäticos y Computation,
Universidad Politecnica de Valencia,

Camino de Vera, s/n, E-46022 Valencia, Spain.
Tel. +34-96-3877356, Fax +34-96-3877359

(dguerrer,vhernand,jroman,avidal)Qdsic.upv.es

Abstract. Plastic injection has been simulated for a long time. How-
ever, this has not been the case for short fiber reinforced thermoplastics,
because the injection of these materials is a much more complex process.
Until now, numerical simulation of the suspension flows has been carried
out by several techniques, but using simplified models or treating par-
ticular geometries such as plate moulds. The objective of HIPERPLAST

-an EU-funded project- was the development of a much more general
HPCN-based simulator valid for generic 3D moulds. The linear systems
which appear in these simulations are very badly conditioned. In this
work, a combination of solver and preconditioner is sought which is ap-
propriate for this particular application.

Topics. Computational fluid dynamics, numerical methods, parallel and
distributed algorithms.

1 Introduction

This work deals with the solution of symmetric indefinite linear systems of equa-
tions by means of Krylov-type iterative methods. Indefinite systems are almost
always difficult to solve for iterative methods and it seems that finding a gen-
eral method for this kind of systems is still an open problem. Therefore, several
methods proposed by different authors have been used to solve a specific problem
with the aim of finding which ones are the most competitive for this particular
case.

The comparison has been carried out having in mind that a parallel imple-
mentation is highly recommended, due to the dimension of the problems to be
solved. Therefore, the study does not take into account those methods or pre-
conditioning techniques, such as ILU, which are known to have less potential
parallelism.

In particular, the application addressed by this work is the simulation of the
injection of short fiber reinforced thermoplastics. The application and the initial
results are described in section 2. The structure of the rest of the text is the
following. In section 3, some different Krylov subspace methods are compared

■ 703 •

FEUP - Faculdade de Engenharia da Universidade do Porto

in terms of convergence rate. Sections 4 and 5 deal with sequential and par-
allel preconditioning techniques, respectively. Finally, section 6 summarises the
results.

2 The HIPERPLAST project

This section gives a brief description of the HIPERPLAST project. Further infor-
mation can be found at the project's web site1.

2.1 Framework and Objectives

HIPERPLAST was an EU-funded project under the HPCN-TTN Network initia-
tive2 of the ESPRIT IV programme. In this initiative, more than 100 demon-
strators were developed with the main focus on showing to different industrial
sectors across Europe how HPCN technology can provide them with substantial
benefits.

The particular objective of HIPERPLAST was the development of a parallel
code for the simulation of the injection of short fibre reinforced thermoplastics.
Although the outcome of the project was a functioning prototype, the fact that it
spanned only 18 months prevented from analysing more sophisticated numerical
methods which could be more suitable for this specific application. This is the
aim of the present work.

In the rest of this section, a description of the project is given, first from
the point of view of the industrial application and the benefits expected by the
industry, and then from the technical perspective.

2.2 The Industrial Problem

Reinforced plastics have many applications and can be found in a wide range of
industrial products, for example in vehicle toys such as cars or bikes. Due to the
high stresses supported by these kinds of products it is necessary to make use of
some structural parts made of stainless steel or aluminium, which pose problems
such as higher production costs and dependence on external suppliers of metallic
components. The use of short fibre reinforced thermoplastics can alleviate these
problems, allowing to define the structure as an assembly of metallic tubes and
joints made of this kind of plastics. By doing this, metallic parts become less
complex and common to several different toy designs, thus reducing stocks. This
last issue is important for the toy industry because of the short life cycle of the
product.

Design of this kind of parts is based on a trial-and-error prototyping process.
The designer uses intuition and expertise to make an initial guess of the appro-
priate shape of the part and parameters of the injection process (e.g. the number

http://hiperttn.upv.es/hiperplast
2 http://www.hpcn-ttn.org

■704-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

and position of the injectors). After modelling the geometry with a CAD tool,
the mould is manufactured and the prototype can be injected and tested to see
if it fulfils the required specifications. The initial design is modified according
to the results of the tests. The process typically takes several iterations until a
satisfactory result is achieved. The main drawbacks of this procedure are its cost
(2000-3000 Euro per mould) and its length in time (more than fifteen days per
mould).

As in many other situations, this expensive trial-and-error procedure can be
replaced by a similar procedure which uses software tools instead of physical
experimentation. In this case, the determination of fiber orientation by means of
computer programmes can give the operator valuable hints about the injection
process. Fiber orientation, caused by processing, has a serious influence on the
final mechanical properties of reinforced components. For this reason the predic-
tion of fiber orientation using flow simulation software is an important tool for
the designer.

Simulation makes the design and the moulding process control easier, faster
and more reliable. It enables the design engineer to study different variants and
analyse the influences of input parameters at a very early stage of development.
Therefore errors in the process and failures of the final part can be predicted in
the simulation, leading to

— shorter development time,
- minimized mould changes,
— enhanced part quality, and
- significant cost reduction.

Computer simulators for injection of plastics are quite common. However,
only few commercial packages can cope with reinforced materials. Some of them
are specific for a plastic processing technique, such as EXPRESS which is intended
for compression moulding or UFOS-GT for the case of thermoforming3.

With respect to injection moulding, the commercial simulators (MOLDFLOW,

CADMOULD) that claim to cope with reinforced materials perform the simulation
by considering only the surface of the mould, without taking into account the
interior flow.

The surface approach is not sufficient for real applications and a 3D mod-
elling is necessary. This increases considerably the complexity of the problem
and requires to solve large systems of linear equations which today can only be
solved in a reasonable time by using parallel codes. As far as the authors know,
HIPERPLAST is the first multi-disciplinary effort to approach this application.

2.3 The HIPERPLAST Simulator

During the HIPERPLAST project, a parallel simulator was developed to compute
the orientation of fibers during the injection moulding process [1].

http://www.rwth-aachen.de/ikv

■705-

FEUP - Faculdade de Engenharia da Universidade do Porto

'M J"
JT D

n
b = w2

The injection process can be modelled by the flow equations, which define an
anisotropic Stokes problem, coupled with the fibre orientation equation and the
volumetric fraction equation. An explicit discontinuous Taylor-Galerkin strategy
has been used in order to decouple these equations [9]. With this scheme, the
main simulation algorithm consists in a loop which advances the time. In each
iteration, the code solves a linear system of equations corresponding to the space
discretisation in the mould domain.

The space discretisation has been done by the Finite Element Method, with
a non standard interpolation scheme for the velocity components (linear inter-
polation plus a bubble function with C° continuity), a conforming linear approx-
imation for the pressure and a constant approximation for the orientation tensor
and the volumetric fraction.

The discretised kinematics equations of the flow give a relation for pressures
and velocities. When assembling the stiffness matrix, the degrees of freedom
associated to the bubble functions can be easily distinguished since they are
decoupled from each other. After applying the boundary conditions, the resulting
system of equations can be written in the following form

(1)

where the nodal quantities, velocities v and pressures p, have been grouped
in vector n, distinguishing them from the bubble velocities b. In (1), D is a
symmetric block diagonal matrix with 3x3 diagonal blocks, M is a symmetric
sparse matrix and J is a rectangular sparse matrix. In order to benefit from
the structure of matrix D, a block Gaussian elimination is applied, yielding the
following set of equations

(M- JD~1JT)n = w1 - JD~lw2 , (2)

JTn + Db = w2 • (3)

The coefficient matrix A = M - JD~lJT has the same pattern as M and
can be computed explicitly without difficulty. This matrix is also symmetric and
indefinite.

For the parallelisation, a domain decomposition strategy was chosen because
it preserves the locality of the problem, which is of great importance for the
efficiency of the implementation. Groups of elements are clustered to form aggre-
gations that are mapped to each processor, and inter-processor communications
overhead is minimised by appropriate decomposition of the geometric domain.
The decomposition process can be seen as an attempt to maximise the ratio of
domain volume to surface area of contact between sub-domains. This was accom-
plished by using the graph partitioning algorithms implemented in the METIS
package [7].

For the scalability of the linear system solution task a Krylov iteration scheme
was used. In particular, the initial implementation used the Conjugate Gradient
method. For matrix-vector products, communication is required for components
of the vector corresponding to nodes in the inter-processor interfaces. In order

706-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

to avoid performance degradation, an appropriate ordering of internal, local
boundary and external boundary unknowns is necessary. In addition to this,
dot products and vector norms represent a synchronisation point in the parallel
algorithm.

Preconditioning is the most problematic part of parallelising an iterative
method. In a first approach, point-Jacobi preconditioning was used because it is
trivially parallelisable.

Fig. 1 shows the performance of the MPI implementation in a SGI Origin 2000
multiprocessor for two test cases, TB2 with a 413392 order coefficient matrix
and TB1 with size 955929. It can be observed from the picture that efficiency
maintains above 70 %.

4 8 16 2 4

Fig. 1. Speedup and efficiency (in %) achieved in an SGI Origin 2000.

2.4 Limitations of the Initial Developments

The conditioning of the linear systems is quite bad. As an example, the following
condition numbers were computed for the first iteration of a simulation with a
small test case, 8484 degrees of freedom:

/c2(M) = 1027, K2(A) = 10
9
, ^{A'1 A) = 103

(4)

where M is the upper left block in (1), A = M — JD~lJT and A = diag(A).
These numbers suggest that the diagonal preconditioning improves considerably
the conditioning of the problem.

The combination of Krylov Subspace Method and Preconditioner used for
the simulator prototype were chosen after comparing the results obtained in
several experiments carried out in a Matlab-type environment. For practical

707-

FEUP - Faculdade de Engenharia da Universidade do Porto

reasons, only small-sized problems were treated in these experiments. However,
this can be misleading. Small-sized problems are not the kind of problems to
be solved by iterative methods in a production environment. Usually, they can
be solved much better by direct methods. Moreover, the spectral properties of
the coefficient matrices of small test problems are typically not representative
of the difficulties present in larger problems that iterative methods are typically
applied to. Small-sized systems often arise from coarse grids, but the spectral
properties may change completely for finer grids.

In spite of this, the numbers get worse when dealing with large cases —some
cases exceed 2 million degrees of freedom— and also as the simulation progresses.
Therefore, a more elaborated preconditioning technique must be sought.

3 Comparison of Krylov Subspace Methods

We consider the linear system of equations (2), which can be written as

Ax = b, x,be Hn , (5)

where A is a large and sparse symmetric indefinite matrix. Due to the size
of A, direct solvers become prohibitively expensive and iterative methods are
considered. Given the initial guess x0, these algorithms compute iteratively new
approximations xk to the true solution x = A~lb. The iterate xm is accepted
as a solution if the residual rm = b - Axm satisfies ||rm||/||b|| < tol, where
tol = 10"10 in all the tests.

The comparison of different Krylov Subspace Methods as well as precon-
ditioners has been carried out with the aid of the PETSc package [2], version
2.0.24. PETSc is a parallel library for the solution of mesh-based algebraic prob-
lems including linear and non-linear systems of equations. It allows the user to
select different Krylov Subspace Methods and preconditioners at run time with
command line options.

Some of the methods discussed in the next sections were not implemented in
the PETSc Toolkit so they had to be coded manually following the conventions
of this package.

3.1 MINRES and SYMMLQ

The Conjugate Gradient method can break down if the coefficient matrix has
both positive and negative eigenvalues. Paige and Saunders [8] proposed two
methods to handle large sparse indefinite symmetric matrices. These methods.
MINRES and SYMMLQ, are shown in Fig. 2.

MINRES tries to determine xk = Vkyk, yk e]R*, such that \\b - Axk\\2

is minimized. This minimization leads to a small system with Tk, the it + 1
by k tridiagonal matrix associated to the Lanczos recurrence. The tridiagonal
structure of matrix Tk is exploited to get a short recurrence relation for xk. The
advantage of this approach is that only three vectors from the Krylov subspace
have to be saved.

708-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Choose Xo Choose xo
x = xo, r = b — Ax, p = ||r||, v = rjp x = xo, r = b — Ax, p = \\r\\, v = rjp

/3 = 0, ß = 0, c= -1, s = 0 ß = 0, ß = 0, c= -1, s = 0, K = p

Void =0, W) = 0, w = V Void = 0, w = 0, g = 0, g = p
while \p\ > tol do while K. > tol do

v <— .At; - ßvoid v ^ Av - ßvoid
a <— v * v, v 4— v — av a <- v * v, v <r- v — av
0 4-\\v\\, V0ld*~V, Vi-v/ß ß*-\\v\\, v0id<-v, v<-v/ß

l\ 4- sa — cß, h «— sß h <— sa — cß, h «— sß

a < sß — ca, ß *— cß a < sß — ca, ß 4— cß

lo «- y/a2 + /32, cf- a/Jo, s <- /3//o lo 4- \/Q2
 + ß2, c*r- a/lo, s <- ß/lo

•uj +- w — hw, w +- v — J2W 9 <-9-hg, g<—hg, g<-g/lo
to ■<— uJ/Zo x <— x + (yc)w + (gs)v 1 _2

x •«— x + (pc)w, p +- sp w <— sw — cv, in- Y g2 + g
end while end while

Fig. 2. The MINRES (left) and SYMMLQ (right) algorithms.

SYMMLQ determines Xk = AVuVu, Vk G K", such that the error x — Xk
has minimum Euclidean length. It may come as a surprise that \\x — Xk\\o can
be minimized without knowing x, but this can be accomplished by restricting
the choice of Xk to AK-k(A; b).

These two methods had to be implemented in order to carry out some test,
since-they are not included in PETSc. The results of the tests (see below) show
that for the matrices tested the methods do not reach convergence in a reasonable
amount of steps without the aid of a preconditioner.

3.2 Symmetric QMR

Both SYMMLQ and MINRES are based on the Lanczos process for symmetric
matrices. Consequently, when preconditioning is used, then the coefficient matrix
of the preconditioned system needs to be symmetric. This condition implies that
the preconditioner itself needs to be a symmetric positive definite matrix. This
restriction for the choice of possible preconditioners for SYMMLQ and MINRES
is rather unnatural when the coefficient matrix itself is highly indefinite.

In [5], Freund and Nachtigal proposed an iterative method for solving sym-
metric indefinite linear systems with arbitrary symmetric preconditioners. The
algorithm can be interpreted as a special case of the quasi-minimal residual
(QMR) method for general non-Hermitian linear systems and generates iterates
defined by a quasi-minimal residual property. The proposed method, which can
be seen in Fig. 3, has the same work and storage requirements per iteration as
SYMMLQ and MINRES, but it usually converges in considerably fewer itera-
tions.

This method was also implemented because it is not included in PETSc. The
convergence history of the three methods, MINRES, SYMMLQ and Symmetric

709-

FEUP - Faculdade de Engenharia da Universidade do Porto

Choose xo
x = xo, r = b — Ax,
Solve M\t = r, T = ||t||2, Solve M2? = t
6 = 0, p = rTq
while not converged do

t <- Aq, a «- qTi
if (7 = 0, stop
a «— p/o, r <— r -
Solve Mit = r,

-at

0<-||*ll2/r, c<- 1/V1+Ö2, T *T-T6C

d = c282d + c2aq, x •«— a; + d
if x converged, stop
if p = 0, stop
Solve M2u = t, poid = p, p <- rru
ß <- P/Poid, q 4-U + ßq

end while

Fig. 3. The Symmetric QMR algorithm.

QMR, with no preconditioning can be seen in Fig. 4. The graphs show the relative
error \\Axk - 6||/||5|| in a logarithmic scale for the first 2000 iterations. It can be
seen that both MINRES and Symmetric QMR produce converge sequences very
close to each other. On the other hand, SYMMLQ shows a very erratic history
which at the end seems to diverge.

Since Symmetric QMR can accept preconditioners which are not necessarily
positive definite, then it can be considered the best of the three methods for the
particular application.

0.01

0.001

0.0001

le-05

le-06

le-07

MINRES
SYMMLQ

QMR

500 1000 1500 2000

Fig. 4. The convergence behaviour of MINRES, SYMMLQ and Symmetric QMR.

-710-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

4 Sequential Preconditioning

In general, when applying an iterative method to (5), convergence is not guar-
anteed or may be extremely slow, as it has been demonstrated in the previous
section. Hence, the original problem must be transformed into a more tractable
form, by applying a preconditioning matrix M either to the right or to the left
of the linear system

AMy = b, x = My , or MAx = Mb . (6)

M should be chosen such that AM (or MA) is a good approximation of the
identity I.

One preconditioner which can give reasonably good acceleration without
much programming effort is Successive Over Relaxation (SOR) and its sym-
metric counterpart, SSOR. The tests show that for this particular application,
a good choice for the relaxation factor is u> = 1, in which case the method is
equivalent to the Gauss-Seidel method.

In the case of SSOR, some optimisation can be done by using the so-called
Eisenstat trick [3]. By using both left and right preconditioning of the linear
system, this variant of SSOR requires about half of the floating point-operations
for conventional SSOR.

Table 1 shows some results related to different sequential preconditioners.
For the comparison, two Krylov-subspace methods have been used: GMRES
and Symmetric QMR. GMRES is a valid method for general non-symmetric
matrices and does not present problems due to indefiniteness. The combination
Symmetric QMR and SOR did not reach convergence in less than 2000 iterations.

GMRES S-QMR
iter time iter time

Jacobi 202 34,31 90 9,37
SOR 75 17,77 -

SSOR 75 18,63 47 12,32
ILU 32 20,01 43 28,3

Table 1. Comparison of different sequential preconditioners.

Both in GMRES and Symmetric QMR, the ILU preconditioning achieves
convergence in less iterations. However, since a lot of computation is necessary
in the initial factorisation step, then the comparison with respect to the total
time is favourable to other preconditioning methods. In particular. SSOR seems
to work quite well in both cases and this suggests that it can give good results
in the parallel setting when combined with a block-Jacobi scheme.

■711 -

FEUP - Faculdade de Engenharia da Universidade do Porto

5 Parallel Preconditioning

Due to the size of the problems to be solved, it is necessary to perform the com-
putations in parallel and therefore to use a preconditioner suitable for parallel
execution.

As the ultimate goal is to reduce the total execution time, both the compu-
tation of the preconditioner matrix M and its application to a vector M~1y
should be done in parallel. Since the matrix-vector product must be performed
at each iteration, the number of nonzero entries in M should not greatly exceed
that in A.

The most successful preconditioning methods in reducing solver iterations,
e.g., incomplete LU factorizations or SSOR, shown in the previous section, are
notoriously difficult to implement on a parallel architecture, especially for un-
structured matrices. ILU, for example, can lead to breakdowns. In addition,
ILU computes M implicitly, namely in the form M = U~p\TOXL-p\T0X, and its
application therefore involves solving upper and lower triangular sparse linear
systems, which are inherently sequential operations.

Polynomial preconditioners with M = p{A), on the other hand, are inher-
ently parallel, but do not lead to as much improvement in the convergence as ILU.
In particular, the authors have implemented the polynomial preconditioning for
the cases of Neumann polynomials and least squares polynomials. However, the
tests performed with these two preconditioners have not shown a noticeable im-
provement in convergence rate. Also, some preliminary test were carried out with
the SPAI preconditioner, [6], but it seems to achieve an acceleration similar to
Jacobi preconditioning.

The preconditioners which have been compared with the test matrices are
the following:

Jacobi. This is the point-Jacobi or diagonal preconditioning. It is the easiest
preconditioner to implement but the reduction in the number of iterations
is moderate. It is included as a reference for the other methods.

BJ-ILU. This is block-Jacobi with the incomplete LU in each block. Neither
overlapping nor relaxation parameters have been used. There is one block
per processor.

BJ-SSOR. This method is the same as BJ-ILU but carrying out a SSOR step
in each block instead of the incomplete LU factorisation.

ASM. This is the Additive Schwarz Method. There is one sub-domain per pro-
cessor.

Table 2 shows the number of iterations required for convergence with GMRES
and each of these preconditioners. Also the execution times in an IBM SP system
are shown for several values of the number of processors, p. The experiments were
carried out with the test case TB2, with a coefficient matrix of order 413392.
The lower part of the table shows similar results for test case TB1. with order
955929.

■712-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

TB2 iter p = 2 p = 4 p = 8 p= 16 p = 24
Jacobi 107
BJ-ILU 30

BJ-SSOR 33
ASM 30

9,74
5,72
7,15

5,21
3,22
3,71
7,39

3,01
1,45
1,88
5,18

1,83
0,82
1,09
1,33

1,64
0,61
0,77
2,48

TBl iter p — 4 p = 8 p = 16
Jacobi 279
BJ-ILU 119

BJ-SSOR 85
ASM 119

29,92
24,16
20,12

16,32
12,11
10,23
20,42

9,34
6,18
5,51
11,89

Table 2. Execution time with different parallel preconditioned for TB2 (up) and TBl
(down).

As it can be seen from the table, block-Jacobi with ILU is the best precon-
ditioner in the medium case while for the large case block-Jacobi with SSOR
reduces the number of iterations even more.

With respect to the scalability of the different solutions, Table 3 shows speed-
up and efficiency in % corresponding to the execution times shown in Table 2.
The figures have been computed relative to the times associated to the execution
with less processors, p = 2 or p = 4. The execution times with p = 1 or p = 2,
respectively, were not representative because the local memory allocated by the
individual processes exceeded the physical memory available in each processor.

It can be seen in this table that block-Jacobi with SSOR scales quite well
and block-Jacobi with ILU even obtains a better efficiency. The reason for this
is that when the number of blocks (i.e. processes) increases, then the amount of
work associated with the incomplete factorisation within the blocks decreases.

6 Conclusions

In this work, an appropriate method is sought for the solution of large sparse
symmetric indefinite linear systems of equations which arise in the simulation of
short fibre reinforced thermoplastics injection processes. The initially developed
solver used the Conjugate Gradient method with Jacobi preconditioning, which
provided with poor convergence rate.

Several Krylov subspace iterative methods, as well as sequential and parallel
preconditioners, have been compared with a test battery corresponding to the
particular application. To make the comparison, three iterative methods and two
preconditioners were implemented in the PETSc Toolkit. The study presents the
Symmetric QMR method as a good choice for the iterative method.

With respect to the preconditioner, block-Jacobi preconditioners have shown
a good behaviour in terms of acceleration of convergence and also in terms of
scalability. Other alternatives such as SPAI must be further investigated.

713-

FEUP - Faculdade de Engenharia da Universidade do Porto

TB2 p. p = ; p= 16 > = 24
Jacobi 1,00 (100%)
BJ-ILU 1,00 (ioo%)

BJ-SSOR 1,00 (ioo%)
ASM

1,87 (93%) 3,24 (81%) 5,32 (66%) 5,93 (50%)
1,78 (89%) 3,94 (99%) 6,97 (87%) 9,38 (78%)
1,93 (96%) 3,80 (95%) 6,56(82%) 9,28 (77%)

1,00 (ioo%) 1,43 (71%) 5,56 (>ioo%) 2,98 (50%)

TBl p = 4 p = 8 p= 16
Jacobi 1,00 (ioo%) 1,83 (92%) 3,20 (80%)
BJ-ILU 1,00 (ioo%) 1,99 (99%) 3,91 (98%)

BJ-SSOR 1,00 (ioo%) 1,97 (98%) 3,65 (91%)
ASM 1,00 (ioo%) 1,72 (86%)

Table 3. Speedup and efficiency in % with different parallel preconditioned for TB2
(up) and TBl (down).

Acknowledgements. The work described in this paper was partially supported by
the European Commission through the HIPERPLAST project (ESPRIT 24003)
and the Spanish Government Commission of Science and Technology under grant
TIC96-1062-C03-01. We would like to thank the High Performance Computing
Center North (Sweden), for providing us access to their IBM SP system.

References

1. E. Arias, V. Hernandez, J. E. Roman, A. M. Vidal et al. HIPERPLAST: An HPCN
Simulator for Reinforced Thermoplastics Injection Processes. To appear in Pro-
ceedings of the ParCo '99 Conference, Delft, The Netherlands (1999).

2. S. Balay, W. D. Gropp, L. Curfman Mclnnes, and B. F. Smith. Efficient Manage-
ment of Parallelism in Object Oriented Numerical Software Libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific
Computing, pp. 163-202, Birkhauser Press (1997).

3. S. C. Eisenstat. Efficient Implementation of a Class of Preconditioned Conjugate
Gradient Methods. SIAM J. on Sei. and Stat. Comp., 2, pp. 1-4 (1984).

4. R. W. Freund. Preconditioning of Symmetric, but Highly Indefinite Linear Sys-
tems. 15th IMACS World Congress on Scientific Computation Modelling and Ap-
plied Mathematics, pp. 551-556 (1997).

5. R. W. Freund, and N. M. Nachtigal. A New Krylov-Subspace Method for Sym-
metric Indefinite Linear Systems. In Proc. of 14th IMACS World Congress (1994).

6. M. J. Grote, and T. Huckle. Parallel Preconditioning with Sparse Approximate
Inverses. SIAM Journal on Scientific Computing, 18(3), pp. 838-853 (1997).

7. G. Karypis and V. Kumar. Multilevel fe-way Partitioning Scheme for Irregular
Graphs. J. Par. and Dist. Comp., 48(1):96-129 (1998).

8. C. C. Paige, and M. A. Saunders. Solution of Sparse Indefinite Systems of Linear
Equations. SIAM Journal on Numerical Analysis, 12(4), pp. 617-629 (1975).

9. A. Poitou et al. Numerical Prediction of Flow Induced Orientation in Anisotropie
Suspensions. Application to Injection Molding of Fibers Reinforced Thermoplas-
tics. J. Mat. Proc. Tech., 32:429-438 (1992).

-714-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Measuring the Performance
Impact of SP-restricted Programming

in Shared-Memory Machines

Arturo Gonzalez-Escribano1, Arjan J.C. van Gemund2, Valentin
Cardefioso-Payo1, Judith Alonso-Lopez1, David Martm-Garcia1, and Alberto

Pedrosa-Calvo1

1 Dept. de Informätica, Universidad de Valladolid.
E.T.I.T. Campus Miguel Delibes, 47011 - Valladolid, Spain

Phone: +34 983 423270, eMail:arturoQinfor .uva.es
2 Dept. of Information Technology and Systems, Delft University of Technology.

P.O.Box 5031, NL-2600 GA Delft, The Netherlands
Phone: +31 15 2786168, eMail:a.vgemund9et.tudelft.nl

Topic: Languages and Tools
Keywords: programming paradigms, compilation, performance evaluation, graph
analysis

Abstract. A number of interesting properties for scheduling and/or cost
estimation arise when parallel programming models are used that restrict
the topology of the task graph associated to a program to an SP (series-
parallel) form. A critical question however, is to what extent the ability
to express parallelism is sacrificed when using SP coordination structures
only. This paper presents new application parameters that are the key
factors to predict this loss of parallelism at both, language modelling and
program execution levels, when programming for shared memory archi-
tectures. Our results indicate that a wide range of parallel computations
can be expressed using a structured coordination model with a loss of
parallelism that is small and predictable.

1 Introduction

In high-performance computing currently the only programming methods that
are typically used to deliver the huge potential of high-performance parallel
machines are methods that rely on the use of either the data-parallel (vector)
programming model or simply the native message-passing model. Given current
compiler technology, unfortunately, these programming models still expose the
high sensitivity of machine performance on programming decisions made by
the user. As a result, the user is still confronted with complex optimization
issues such as computation vectorization, communication pipelining, and. most
notably, code and data partitioning. Consequently, a program, once mapped
to a particular target machine is far from portable unless one accepts a high
probability of dramatic performance loss.

-715-

FEUP - Faculdade de Engenharia da Universidade do Porto

It is well-known that the use of structured parallel programming models of
which the associated DAG has series-parallel structure (SP), has a number of
advantages [17], in particular with respect to cost estimation [15. 5. 16], schedul-
ing [4, 1], and last but not least, ease of programming itself. Examples of SP
programming are clearly found throughout the vector processing domain, as well
as in the parallel programming domain, such as in the Bird-Meertens Formal-
ism [16], SCL [3], BSP [19], NestStep [11], LogP [2], SPC [5], OpenMP [13] *

Despite the obvious advantages of SP programming models, however, a crit-
ical question is to what extent the ability to express parallelism is sacrificed
by restricting parallelism to SP form. Note that expressing a typically non-SP
(NSP) DAG corresponding to the original parallel computation in terms of an SP
form essentially involves adding synchronization arcs in order to obey all existing
precedence relations, thus possibly increasing the critical path of the DAG. For
instance, consider a macro-pipeline computation of which the associated NSP
DAG is shown at the left of Fig. 1, representing a programming solution accord-
ing to an explicit synchronization or message-passing programming model. The
figure on the right represents an SP programming solution, in which a full bar-
rier is added between every computational step. While for a normally balanced
workload situation the SP solution has an execution time similar to the NSP
one, in the pathological case where only the black nodes have a delay value of
T while the white ones have 0, the critical path of the SP solution has highly
increased. Due the high improbability of such workload situations in a normal
computation, SP solutions are generally accepted in vector/parallel processing.
They are an easy and understable way to program, useful for data-parallel syn-
chronization structures as well as many other task-parallel applications, and
provide portability to any shared or distributed-memory system.

Fig. 1. NSP and SP solutions for a macro-pipeline (Inner part)

Let ") > 1 denote the ratio between the critical path of the DAG associ-
ated with the original (NSP) algorithm and the DAG of the closest SP program
approximation, yet without exploiting any knowledge on individual task work-

Although OpenMP directives are oriented to SP programming, it provides a library
for variable blocking that can be used to produce NSP synchronizations.

-716-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

loads (i.e., only topology is known). Recently, empirical and theoretical results
have been presented that show that 7 is typically limited to a factor of 2 in
practice [5, 6, 8]. In addition, empirical evidence [8] has been presented that for
a wide range of parallel applications, especially those within the data parallel
(vector) model, 7 is strongly determined by simple characteristics of the problem
DAG pertaining to topology and workload.

Let r denote the ratio between the actual execution times of both solutions
when implemented and optimized in a real machine. While 7 > 1 at program
level, the actual performance loss (r) as measured at machine level will be
positively influenced by the SP programming model as mentioned earlier (See
Figure 2). Thus, the initial performance loss when choosing an SP-structured
parallel programming model may well be compensated or even outweighed by
the potential gains in portability and in performance through superior scheduling
quality (in terms of both cost and performance).

Problem defini

1
ion Problems Space

(Generic algorithm Algorithm Level

Y
NSP program SP program

r '

Heuristi
Optimizati

&
Scheduli

on

'

Improved
Optimizati

&
■ Schedulin

Dn

g

0 ^ Tam

Fig. 2. Measures of performance loss at different levels of abstraction.

In this paper we present the results of a study into the properties of 7 and.
in particular, r. More specifically,

- we extend our earlier study on 7, which was primarily based on synthetic
DAGs, with new results for real parallel applications, which confirm the
applicability of simple algorithm metrics (such as application scalability,
expected number of iterations, synchronization complexity), as prediction
parameters for 7.

- we present the results of a study on the relationship between r and 7
based on the implementation of representative applications on two different
shared memory architectures: CC-NUMA (Origin2000) and vector machine
(CrayJ90), using different parallel language models (OpenMP or native par-
allel compiler-directives and message passing, in SP and NSP versions).

This paper is organized as follows. In Section 2 we present a model to mea-
sure the loss of parallelism at program abstraction level (7). Section 3 contains

-717-

FEUP - Faculdade de Engenharia da Universidade do Porto

an overview of the program parameters that determine 7, with some supporting
theoretically derived formulae. Section 4 introduces the experiments design to
measure the loss of parallelism in algorithms and applications implemented on
real machines. The results obtained for representative algorithms when measur-
ing r are explained in Section 5.

2 Program level model

The decision to use an NSP or an SP language is taken at the program abstrac-
tion level. At this point, the programmer is not concern about the cost of the
parallelization mechanics (communications, creation and destruction of tasks,
mutual exclusion). He uses a parallel language or library to express the algo-
rithm he designed, taken advantage of the semantics to exploit the parallelism
inherent to the problem. Although SP-restricted languages are easier to under-
stand and program, being constrained to SP structures, some of the parallelism
could be lost due to added synchronizations. At this level we investigate to what
extent one can expect high losses to appear, and what parameters related to the
algorithm and workload distribution are responsible for this loss.

For our model of programs we use AoN DAGs (Activity on Nodes), denoted
by G - (V, £), to represent the set of tasks (V) and dependencies (E) associated
with a program when run with a specific input-data size. Each node represent a
task and has an associated load or delay value representing its execution time. At
this level edges represent only dependencies and have no delay value. If required,
communication delays should be included in terms of their own specific tasks.
SP DAGs are a subset of tasks graphs which have only series and parallel
structures, which are constructed by recursively applying Fork/Join and/or series
compositions [6].

Let W : V -4 R denote the workload distribution of the tasks. For a given
graph G and W, we define C(G) (Critical path or Cost) to be the maximum
accumulated delay over all full paths of the graph.

A technique to transform an NSP graph to SP structure without violating
original precedence relations is called an SP-ization technique. It is a graph
transformation (T : G -» G') where G is an NSP graph and G' has SP form, and
all the dependencies expressed in G are directly or transitively expressed in G'.
Due to the new dependencies an SP-ization introduces, the critical path may be
increased. Let 7 denote the relative increment in the critical path produced by
a given T, and in general by the best possible T, according to

= 15(G) ' 7 = m£n(lT>

respectively. Clearly, 7 is a function of DAG topology and workload W. For a
given W. there exists a transformation T such that 77- is minimal. However,
in a usual programming situation the exact W is either not known or highly
data-dependent, and can therefore not be exploited in determining the optimal
SP program. Thus, of more interest in our study into 7 are the upper bound

-71

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

7r and the mean value 7^ = E(7r) for any possible W. Although there does
not exist a generic optimal SP-ization for any G and W, we have conjectured in
previous work that typically it holds

VG, ST : 7T < 2

except for pathological (extremely improbable) values of W [5].
In general, in absence of real W information, a fair assumption is to use i.i.d.

(independent, identically distributed) task loads. This model seems especially
suitable for huge regular problems and topologies, and generally accurate enough
for fine or medium grain parallelism.

Let G = (V,E) be a DAG, and let t 6 V denote a task. Then we define a
number of DAG properties as listed in table 1.

Task in-degree
Task out-degree
Task depth level
Graph layers
Graph depth

Graph parallelism

Synchronization density

i{t) = \{(f,t)eE}\
o(t) = \{(t,f)£E}\
d(t) = 1 + max(d(t')) : (<', t) 6 E
L(G) = {l:lCV;t,t' el=>d(t)--
D(G) = max(d(t))

PIG) - max (l/l)
teHG)

s(G) 4E im?m
 tev

d(t')}

Table 1. Graph properties

3 Effect of program parameters

Previous empirical studies [6] with random i.i.d. W identified specific structured
topologies that present worse 7 values than random unstructured topologies with
the same number of nodes. Mainly the inner part of Pipelines (see Fig. 1) and
Cellular Automata programs. Consequently, we shall chose the above topologies
as starting point for our research on the topological factors that are responsible
for the loss of parallelism as a result of SP-ization. Other interesting algorithms
are also included: LU reductions, Cholesky factorizations, FFT, and several syn-
thetic topologies.

Graphs generated from these algorithms, for different input-data sizes, has
been constructed in the program level model. Using random task loads and
simple SP-ization techniques [7], an estimation of 7 has been derived for them,
studying the effect of several graph parameters. Only some of them show to be
relevant.

The metrics scalability (or number of processors), and number of iterations
are measured with the graph size parameters: Maximum degree of parallelism (P)
and Depth level (D). The effect of P and D, measured in several representative

-719-

FEUP - Faculdade de Engenharia da Universidade do Porto

applications, is shown to be under-logarithmic on 7, and bounded by simple
functions [8]. See an example in Fig. 3, with the curves generated for a 2D
cellular automata when one parameter is fixed. The contribution of D to the
loss of parallelism is limited when D > P. This applies for all topologies tested
except a special case, which the inner part of a pipeline is an example [8].

2D Cellular Automata (5-stencil) 2D Cellular Automata 40x40 (5-stenol)

100TO0300400500600 700 800900

Dtr>pi*Leve<)

Fig. 3. Effect of P and D - 2D Cellular Automata

Furthermore, the synchronization activity inherent in an algorithm, repre-
sented by the Synchronization Density parameter (5), limits the 7 growing even
for small values. In Fig. 4(a) is shown how the increment of the number of edges
in a synthetic regular topology immediately limits the possible loss of paral-
lelism. In the other hand, small values of 5 (S < 2) indicate the presence of
task series. SP-ization techniques that take advantage of these structures lead to
great decreases of 7. Fig. 4(b) present this effect on a fine grain parallelization
of a Cholesky factorization. The values of 7 are influenced by the small and
variable S parameter, that in this case depends on the input-data size, growing
for very small sizes and decreasing afterwards.

Ranaom EOgesGrid (D=P=100) Cholesky Factorization (S<2)

Fig. 4. Effect of P and D - 2D Cellular Automata

-720-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Some theoretically derived formulae, using coarse SP aproximations of the
original DAGs and order statistics, support these results [18]. An example fol-
lows:

Let P = D and let W be modeled by an i.i.d. delay per node according to a
Gaussian(/i,cr) distribution. The critical path (Csp) of SP graphs can be derived
using a well-known approximation of the cost of a P-node parallel section from
order statistics [10], given by

CP=H + <7v/21og(0.4P)

It follows

CSP = D(n + a^/2\og(0AP))

Since generally the cost estimation of NSP stochastic DAGs is analytically in-
tractable, we approximate the NSP DAGs by SP DAGs that capture the main
inner features of the original. It appears that the parallelism P' of the SP DAG
approximation is directly related to S and P of the original NSP DAG, accord-
ing to P' = S + log(P/2) for cellular automata and pipeline topologies. (For ID
cellular automata S — 3, for pipeline S = 2 [7]). CNSP is then approximated
within 10% error [7].

Subsequently applying the SP DAG critical path approximation from order
statistics vields

CNSp = D(/i + aN/21og(0.4(5 + log(P/2))))

Consequently

_= CSP £>(// +<V21og(0.4P))
7 CNSp ~ D(fi + ay/21og(0.4(5 + log(P/2))))

This formula agrees with our experiments within 25% [18]. A coarse, but
meaningful simplification of the formula for (typically) large P is given by

_ ^ II + gy/l0g(P)

~ fl +ay/lOg{S)

Indeed, the asymptotic influence of P is clearly logarithmic, while the effect
of S is exactly inverse, which is in agreement with the results. Also the effect of
the workload distribution is in agreement with our measurements (considering
the typical case where P > 5).

4 Program execution level

At implementation level a parallel program is compiled and optimized for an spe-
cific machine. When executed, it uses costly mechanisms to spawn, synchronize

721

FEUP - Faciddade de Engenharia da Universidade do Porto

and communicate tasks. At this level the underlying architecture of the machine
becomes important.

The exact cost added to the real execution time is highly dependent on the
implementation, for a particular machine, of the parallel mechanisms provided
at the language level. The advantages of the architecture must be exploited.

An SP version of a program typically needs to add dependencies, and new
delays inherent to the more complex synchronization and communication scheme
may increase execution times. The cost of any parallel mechanism is different
for each architecture. Nevertheless, the better data partitioning and scheduling
techniques, only possible when SP-restricted programming is used, can minimize
the communication needings and compensate this effect.

In this study we focus in shared-memory architectures. The programming
techniques used in these machines are straightforward, and the programmer is
not normally facing the data distribution or scheduling details directly.

Our study is focused in two basic shared-memory architectures: CC-NUMA
(Origin2000) and Vector-machine (CrayJ90). Both have representative proper-
ties for performance evaluation of synchronization techniques. CrayJ90 has a
non-hierarchical memory structure. Thus, synchronizations and data access have
more predictable delay times. Automatic optimizations deployed by the compiler
are mainly oriented to the efficient use of the vector processing units and coarse
grain parallelization. Origin2000 is a CC-NUMA machine. The use of memory
hierarchy improves performance, while cache-coherence protocols and automatic
process migration try to hide machine level details to the programmer. Nev-
ertheless, the efficient use of memory locality is not an easy task even with
compiler assistance. Delay times for data access and synchronizations are less
stable, specially when full communications or barriers are used across the whole
system.

Experiments design: For the experiments presented in this paper we have
chosen three of the most representative and easy to program algorithms studied
at the previous level:

- 2D Cellular automata (1750x1750 grid, 1750 iterations)
- Pipeline (Inner part, see Fig. 1) (30000 cells vector, 30000 iterations)
- LU reduction (1750x1750 matrix)

The algorithms has been implemented straightforward, mainly from docu-
mentation examples and text books, in different programming models:

- MPI, NSP version (Cray and Origin2000)
- MPI with added Barriers. SP version (Cray and Origin2000)
- OpenMP directives, SP version (Origin2000)
- OpenMP variable blocking. NSP version (Origin2000)

For performance comparing, our reference model is the MPI implementation.
The second model is generated adding barriers to the original MPI code, to

■722-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

transform it to SP form. This let us compare the real effect of a direct transfor-
mation form NSP code to SP, using the same parallel tool implementation. In
most examples two versions of OpenMP are presented. The first one uses simple
OpenMP directives, mainly parallel loops, sections and barriers to produce an
SP program. In most cases the use of barriers has been intentionally included to
compare with the MPI barrier version. The second one, not developed in every
example, is a complicated NSP code where every synchronization is implemented
as variable blockings. They are used as semaphores in the most possible efficient
way.

We avoid compiler aggressive optimization except in the last version. Com-
piler code manipulation (mainly loop reordering and unrolls) could change the
synchronization patterns. Cray versions are compiled with vector optimizations
enabled. Specific SP data partitioning and scheduling techniques has not been
exploited; we rely on the machine native system.

Measures include the total execution time of the parallel section of each
code, as well as the mean and deviation of task times. We consider a task to be
a continuous serial computation, from the point after a wait for synchronization
is issued (one or more communication receptions, blockings or barriers) to the
next one. The experiments were conducted with 2,4,6 and 8 processors. Results,
codes and tools used are available [14].

5 Results

In this section we present the results of the machine level experiments. Compar-
isons with the 7 predictions obtained for these problems with the program level
model are discussed.

Workload distribution: Parameters from real workloads distributions, ob-
tained when running the programs, are studied. When the problem size is fixed,
and the number of processors is incremented, the workload per task is parti-
tioned, leading to smaller tasks. In general, pieces of computation of different
size present different mean and deviation on the same machine. Thus, for a
fixed problem size, the deviation is variable when the number of processors is
changing, and the ratio differs for every machine. Fortunately, the differences
are small enough, and measures obtained in the program level model, with the
same workload deviation, introduce a minimum error.

Balanced computations: As expected, the task loads of Cellular Automata
and Pipeline problems present a minimum deviation in both machines.

Cellular Automata: S/fj. € (0.01,0.06)
Pipeline: 6/ß e (10~5, 10~3)

In Fig. 5, Fig. 6 and Fig. 7 is perfectly clear that SP versions (specially the
MPI-SP one) has negligible increment on the execution time comparing with

-723-

FEUP - Faculdade de Engenharia da Universidade do Porto

the MPI reference model. The small slope of the T curves is perfectly compliant
with 7 predictions of our program level model, although the values are slightly
higher due to the added communication costs, not previously considered.

CrayJ90-Cellular Automata (1750x1750) 1750 rterations CrayJ90 - Cellular Automata (1750x175011750 Iterations

Fig. 5. CrayJ90 - 2D Cellular Automata

Onrjin2000 - Cellular Automata (1750x1750) 1750 iterations Origin2000 -Cellular Automata (1750x1750) 1750 iterations

MPI-Be™r*(SP> -
OpeiMPfNSP) -

Fig. 6. Origin2000 - 2D Cellular Automata

Each barrier (on each iteration) produce a constant increment on the execu-
tion time, apart from the loss of parallelism. It is remarkable that the Origin2000
MPI barrier implementation is almost perfectly efficient, while the OpenMP
system adds significantly cost to the execution time [9]. More efficient nested
fork/join techniques in the Origin2000 are being researched [12].

As shown in Fig. 6, the OpenMP-SP program generated for the cellular
automata problem has shown to be rather inefficient due to poor serial code
optimization, that adds a constant time to each iteration. Although another im-
proved version has been programmed that shows much better results (plot moved
down), it is interesting to notice the similarities between the high r curve and
the predictions from the program level model. At the same time, in every figure
the OpenMP-NSP version, aggressively optimized, produces lesser task delays

•724-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Origin2000 • MPSynch Pipeline (30000) 30000 iterations Origin2000 - MPSynch Pipeline (3O00Q) 30000 Iterations

One" MP-Barney SP) -

Fig. 7. Origin2000 - Pipeline (inner part)

and therefore lesser final execution time. Nevertheless, in r terms the results
are comparable with the MPI reference model as the synchronization pattern
has not been changed. This reveals that even if r could be highly affected by
serial programming practices and optimization, the effect of SP-synchronization
generated in the program level is preserved.

Unbalanced computations: LU reduction programs typically distribute the
rows of the matrix to the processors, synchronizing after rows update. This
scheme do not exploit fine grain parallelism inherent to each element update.
The amount of work for each task will be too small, and the communication cost
will overcome the computation.

Medium-coarse grain parallelism provides higher deviations, as the tasks do
not run similar computations. In this case, processing only the triangular part
of the matrix, the number of elements that are updated in each row are differ-
ent, and changing in each iteration. This effect is slightly reduced in the MPI
implementation through rows interleaving. The deviations are still high:

LU reduction: 6/p € (1.5,1.7)

In Fig. 8 the r curve obtained in the CrayJ90 is compared with 7 predictions
for highly unbalanced situations. The r high values are not still fully explained.
A newT increasing effect is produced by the variable cost of a barrier when the
number of processors is growing. See Table 2. Adding the predicted effect of
7 to the cost of 1750 barriers (one for each iteration) a narrow approximation
of the real execution time is obtained. This effect less noticeable in programs
with higher task loads like cellular automata (see Fig. 5) and in the Origin2000,
where the barrier relative cost is much lesser (see Fig. 9). For Origin2000 it
is only detectable for applications with really low task loads, as pipeline (see
Fig. 7).

Efficient SP programming: For LU reduction algorithm the OpenMP-NSP
version is quite complicate and has not been programmed. Instead, in Fig. 9 we

-725-

FEUP - Faculdade de Engenharia da Universidade do Porto

NPROC CrayJ90 Origin2000
2 .002 .00005
4 .007 .00049
6 .011 .00053
8 .016 .00083

Table 2. Barrier cost estimation

CrayJ90 ■ LU reOuction (1750x17501 CrayJ90 - LU reduction (1750x1750)

Fig. 8. CrayJ90 - LU reduction

show the results obtained with a manually parallelized OpenMP version, based
on SP parallel loops. Automatic optimizations has been applied. An efficient
SP version produces good results in T terms, with no relative increase when
compared with the MPI reference model.

Iterations: Reduced executions of the algorithms has been run with small but
growing number of iterations. Results obtained are compliant with the program
level predictions. In Fig. 10 is shown how in a cellular automata, for a fixed
number of processors, the execution tinte grows with a given ratio for each pro-
gramming model. Consequently, F is not dependent on the number of iterations
D (provided D > P as predicted on the program level).

6 Conclusion

In this paper we present a study on the relationship between the loss of par-
allelism inherent to SP-restricted programming at program or algorithm design
level and the real performance loss as measured at machine execution level.
These results point out that the difficult task of mapping a code to a real par-
allel machine is indeed much easier with a restricted SP language model, while
the actual performance loss (F) due to the lack of expressiveness is only small
and predictably related to the properties of the algorithm (7).

One should note that SP particular techniques for scheduling- or data par-
titioning have not been exploited. The results presented in this paper can be
improved with the use of specific SP programming environments.

-726-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Origin2000 - LU reduction (1750x1750) Origin2000 - LU reduction (1750x1750)

OpffiMP-BameTUSP) ■
MPI-Bar-icrelSPl —»—

Op«rMP(SP) —m— 1

1

■ 1

Fig. 9. Origin2000 - LU reduction

Ongin2000 - Cellular Automata (1750x1750) 8 CPUs

Op»nMP-BaT>efsr&>) —^
MPI-B»ft«ri(SPl —«—

MPI(NSP) —•—
Op»nMP(NSP) —■—

Origin2000 Cellular Automata (i 750xi 750) 8 CPUs

OpanlJp-BjLmertfSP)
MPI-BtmvKSP)

OiwnUP(NSP) —

\
\^ I

Fig. 10. Origin2000 - 2D Cellular Automata - Iterations

In summary, we show that many parallel computations can be expressed us-
ing a structured parallel programming model with limited loss of parallelism,
both at the algorithm level and the machine execution level. To the best of our
knowledge such a comparative study between NSP and approximated SP imple-
mentations of real applications has not been performed before. The significance
of the above results is that the optimizability and portability benefits of efficient
cost estimation in the design and/or compilation path can indeed outweigh the
initial performance sacrifice when choosing a structured programming model.

Future work includes a further study into more irregular, data-dependent or
dynamic algorithms and applications, to determine DAG properties to accurately
measure both 7 and r, as well as exploration of the benefits of specific SP
programming environments for both, shared-memory and distributed memory
architectures.

Acknowledgements

We thank the Rekencentrum. Rijksuniversiteit Groningen (The Netherlands), for
let us use their CrayJ90 machine. The Origin2000 machine is a property of the
University of Valladolid. (Spain).

■Ill-

FEUP - Faculdade de Engenharia da Universidade do Porto

References

[lj R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by
work stealing. In Proc. Annual Symposium on FoCS, pages 356-368, nov 1994.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. LogP: towards a realistic model of parallel computation.
In Proc. 4th ACM PPoPP, pages 1-12, San Diego, CA, USA, May 1993.

[3] J. Darlington, Y. Guo, H.W. To, and J. Yang. Functional skeletons for parallel
coordination. In Europar'95, LNCS, pages 55-69, 1995.

[4] L. Finta, Z. Liu, I. Milis, and E. Bampis. Scheduling UET-UCT series-parallel
graphs on two processors. DIM ACS Series in DMTCS, 162:323-340, aug 1996.

[5] A.J.C. van Gemund. The importance of synchronization structure in parallel
program optimization. In Proc. 11th ACM ICS, pages 164-171, Vienna, 1997.

[6] A. Gonzälez-Escribano, V. Cardenoso, and A.J.C. van Gemund. On the loss of
parallelism by imposing synchronization structure. In Proc. 1st Euro-PDS Int'I
Con}, on Parallel and Distributed Systems, pages 251-256, Barcelona, July 1997.

[7] A. Gonzälez-Escribano, V. Cardenoso, and A.J.C. van Gemund. Loss of par-
allelism on highly regular DAG structures as a result of SP-ization. Technical
Report l-60340-44(1999)-04, TU Delft, The Netherlands, July 1999.

[8] A. Gonzälez-Escribano, A.J.C. van Gemund, V. Cardeiioso-Payo, H-X. Lin, and
V. Vaca-Dfez. Expressivenes versus optimizability in coordinating parallelism. In
Proc. ParCo'99, Delft, August 1999.

[9] Paul Graham. OpenMP a parallel programming model for shared memory archi-
tecture. Techical-watch report, EPCC, The University of Edinburgh, Mar 1999.
available from http://www.epcc.ed.ac.uk/epcc-tec/documents/.

[10] E.J. Gumbel. Statistical Theory of Extreme Values (Main Results), chapter 6.
pages 56-93. Wiley Publications in Statistics. John Wiley k Sons, 1962.

[11] C.W. Kessler. NestStep: nested parallelism and virtual shared memory for the
BSP model. In Int. Conf. on Parallel and Distrbuted Processing Techniques and
Applications (PDPTA '99), Las Vegas (USA), June-July 1999.

[12] X. Martorell, E. Ayguade, N. Navarro, J. Corbalän, M. Gonzalez, and J. Labarta.
Thread fork/join techniques for multi-level parallelism exploitation in NUMA mul-
tiprocessors. In ICS'99, pages 294-301, Rhodes, Greece, 1999.

[13] OpenMP organization. WWW. on http://www.openmp.org.
[14] PGamma. Measuring the performance impact of SP programming: Resources and

tools. WWW. on http://www.infor.uva.es/pnal/arturo/pgamma.
[15] R.A. Sahner and K.S. Trivedi. Performance and reliability analysis using directed

acyclic graphs. IEEE Trans, on Software Eng., 13(10):1105-1114, Oct 1987.
[16] D.B. Skillicorn. A cost calculus for parallel functional programming. Journal of

Parallel and Distributed Computing, 28:65-83, 1995.
[17] D.B. Skillicorn and D. Talia. Models and languages for parallel computation.

ACM Computing Surveys, 30(2):123-169, June 1998.
[18] A. Vaca-Di'ez. Tools and techniques to assess the loss of parallelism when imposing

synchronization structure. Tech.Rep. 1-68340-28(1999)02, TU Delft, Mar 1999.
[19] L.G. Valiant. A bridging model for parallel computation. C.ACM. 33(8):103-111.

Aug 1990.

-728-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A SCOOPP Evaluation on Packing
Parallel Objects in Run-time*

Joäo Luis Sobral, Alberto Jose Proen9a

Departamento de Informätica - Universidade do Minho
4710 - 057 BRAGA - PORTUGAL

{jls, aproenca}@di.uminho.pt

Abstract The SCOOPP (Scalable Object Oriented Parallel Programming)
system is an hybrid compile and run-time system. SCOOPP dynamically scales
00 applications on a wide range of target platforms, including a novel feature
to perform a run-time packing of excess parallel tasks. This communication
details the methodology and policies to pack parallel objects into grains and
method calls into messages. The SCOOPP evaluation focus on a pipelined
parallel algorithm - the Eratosthenes sieve - which may dynamically generate a
large number of fine-grained parallel tasks and messages. This case study
shows how the parallelism grain-size - both computational and communication
- has a strong impact on performance and on the programmer burden. The
presented performance results show that the SCOOPP methodology is feasible
and the proposed policies achieve efficient portability results across several
target platforms.

1 Introduction

Most parallel applications require parallelism granularity decisions: a larger number
of fine parallel tasks may help to scale up the parallel application and it may improve
the load balancing. However, if parallel tasks are too fine, performance may degrade
due to parallelism overheads, both at the computational and communication level.

Static granularity control, performed at compile-time, can be efficiently applied to
fine grained tasks [1][2], whose number and behaviour is known at compile-time.
HPF [3], HPC++ [4], and Ellie [5] are examples of environments that support static
granularity control. However, parallel applications where parallel tasks are
dynamically created and whose granularity can not be accurately estimated at
compile-time require dynamic granularity control to get an acceptable performance;
this also applies when portability is required across several platforms.

Granularity control can lead to better performance when performed by the
programmer, but it adds an extra burden on the programmer activity: it requires
knowledge of both the architecture and the algorithm behaviour, and it also reduces
the code clarity, reusability and portability.

This work was partially supported by the SETNA-ParComp project (Scalable
Environments, Tools and Numerical Algorithms in Parallel Computing), under PRAXIS XXI
funding (Ref. 2/2.1/TIT/1557/95).

-729-

FEUP - Faculdade de Engenharia da Universidade do Porto

The SCOOPP system [6] is an hybrid compile and run-time system, that extracts
parallelism, supports explicit parallelism and dynamically serialises parallel tasks in
excess at run-time, to dynamically scale applications through a wide range of target
platforms. This paper evaluates the application of the SCOOPP methodology to
dynamically scale a pipelined application - the Eratosthenes sieve - on three different
generations of parallel systems: a 7 node Pentium II 350MHz based cluster, running
Linux with a threaded PVM on TCP/IP, a 16 node PowerPC 601 66 MHz based
Parsytec PowerXplorer and a 56 node T805 30Mhz based Parsytec MultiCluster 3,
both running PARIX with proprietary communication primitives, functionally
identical to PVM. The cluster nodes are inter-connected through a 1 GBbit Myrinet
switch, the PowerXplorer nodes use a 4x4 mesh of 10Mbit Transputer-based
connections and the MultiCluster Transputers are interconnected through a 7x8 mesh.

Section 2 presents an overview of the SCOOPP system and its features to
dynamically evaluate the parallelism granularity and to remove excess parallelism.
Section 3 introduces the Eratosthenes sieve and presents the performance results.
Section 4 concludes the paper and presents suggestions for future work.

2 SCOOPP System Overview

SCOOPP is based on an object oriented programming paradigm supporting both
active and passive objects. Active objects are called parallel objects in SCOOPP
(//obj) and they specify explicit parallelism. These objects model parallel tasks and
may be placed at remote processing nodes. They communicate through either
asynchronous or synchronous method calls.

Passive objects are supported to take advantage of existing code. These objects are
placed in the context of the parallel object that created them, and only copies of them
are allowed to move between parallel objects. Method calls on these objects are
always synchronous.

Parallelism extraction is performed by transforming selected passive objects into
parallel objects (more details in [7]), whereas parallelism serialisation (i.e. grain
packing) is performed by transforming parallel objects into passive ones [8].

Granularity control in SCOOPP is accomplished in two steps. At compile-time the
compiler and/or the programmer specifies a large number of fine-grained parallel
objects. At run-time parallel objects are packed into larger grains - according to the
application/target platform behaviour and based on security and performance issues -
and method calls are packed into larger messages.

Packing methodologies are concerned on "how" to pack and "which" items to
pack; this subject is analysed in section 2.1. These methodologies rely on parameters,
which are estimated to control granularity at run-time; these are analysed on section
2.2. Packing policies focus on "when" and "how much" to pack, and they heavily rely
on the structure of the application; this subject is analysed in section 2.3.

-730-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

2.1 Run-time Granularity Control

Conventional approaches for run-time granularity control are based on fork/join
parallelism [9][10][11][12][13]. The grain-size can be increased by ignoring the fork
and executing tasks sequentially, avoiding spawning a new parallel activity to execute
the forked task.

The SCOOPP system dynamically controls granularity by packing several //obj
into a single grain and serialising intra-grain operations. Additionally, SCOOPP can
reduce inter-grains communication by packing several method calls into a single
message.

Packing Parallel Objects. The main goal of object packing is to decrease parallelism
overheads by increasing the number of intra-grain operations between remote method
calls. Intra-grain method calls - between objects within the same grain - are
synchronous and usually performed directly as a normal procedure call; asynchronous
inter-grain calls are implemented through standard inter-tasks communication
mechanisms.

The SCOOPP run-time system packs objects when the grain-size is too fine and/or
when the system load is high. The SCOOPP system takes advantage of the
availability of granularity information on existing //obj. When parallel tasks (e.g.
//obj) are created at run-time, it uses this information to decide if a newly created //obj
should be used to enlarge an existing grain (e.g. locally packed) or originate a new
remote grain.

Packing Method Calls. Method call packing in SCOOPP aims to reduce parallelism
overheads by packing several method calls into a single message.

The SCOOPP run-time system packs method calls when the grain-size is too fine.
On each inter-grains method call, SCOOPP.uses granularity information on existing
objects to decide if the call generates a new message or if it is packed together with
other method calls into a single message.

Packing Parallel Objects and Method Calls. The two types of packing complement
each other to increase the grain-size. They differ in two aspects: (i) method calls can
not be packed on all applications, since the packing relies on repeated method calls
between two grains, and may lead to deadlock when calls are delayed for an arbitrary
long time; this delay arises from the need to fulfil the required number of calls per
message; (ii) method calls in a message can be more easily unpacked than objects in a
grain. Reversing object packing usually requires object migration, whereas packs of
method calls can be sent without waiting for the message to be fully packed. In
SCOOPP, packs of methods calls are sent either on programmer request or when the
source grain calls a different method on the same remote grain.

-731-

FEUP - Faculdade de Engenharia da Universidade do Porto

2.2 Parameters Estimation

To take the decision to pack, two sets of parameters are considered: those that are
application independent and those that are application dependent. The former
includes the latency of a remote "null-method" call (a) and the inter-node
communication bandwidth. The later includes the average overhead of the method
parameters passing (v), the average local method execution time (|i), the method
fan-out (<|>) (e.g., the average number of method calls performed on each object per
method execution) and the number of grains per node (y).

Application independent parameters are statically evaluated by a kernel
application, running prior to the application execution; parameters that depend on the
application are dynamically evaluated during application execution. The next two
subsections present more details of how these two types of parameters are estimated.

Application Independent Parameters. Application independent parameters include
the latency of a remote "null-method" call (a) and the inter-node communication
bandwidth. Both parameters are defined for a "unloaded" target platform. They are
estimated through a simple kernel SCOOPP application that creates several //obj on
remote nodes and performs a method call on each object.

The remote method call latency (a) is the time required to activate a method call
on a remote //obj. It is estimated as half the time required to call and remotely execute
a method that has no parameters and only returns a value.

The inter-node communication bandwidth is estimated by measuring the time
required to call a method with an arbitrary large parameters size. It is half of the
division of the parameters size by the time required to execute the method call.

On some target platforms, these two parameters depend on the pair
source/destination nodes, namely on the interconnection topology. In such cases, the
SCOOPP computes the average from the parameters taken between all pairs of nodes.
Moreover, these parameters tend to increase when the target platform is highly
loaded, due to network congestion and computational load. However, this effect is
taken into account on the SCOOPP methodology through the y parameter (number of
grains per node), which is a measure of the load on each node.

These two parameters are statically estimated to reduce congestion penalties at
run-time, since they require inter-node communication, which is one of the main
sources of parallelism overheads. Their evaluation at run-time, during application
execution, may introduce a significant performance penalty.

Application Dependent Parameters. SCOOPP monitors granularity by computing,
at run-time, the average overhead of the method parameters passing (v), the average
method execution time (\i) and the average method fan-out (<)>). SCOOPP computes
these parameters, at each object creation, from application data collected during
run-time.

The overhead of the method parameters passing (v) is computed from the
inter-node communication bandwidth multiplied by the average method parameter

-732-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

size. This last one is evaluated by recording the number of method calls and adding
the parameter sizes of each method call.

The average method execution time (\i) is evaluated by recording the time required
to perform each local method execution. When a method does not perform other calls,
this value is just the elapsed time. When a method contains other calls, the
measurement is split into the pre-call and after-call phases, and the previous
procedure is applied to each phase. Moreover, the time required to perform the
pre-call phase is used has a first estimate of the average method execution time, so
that the average method execution time data is available for the next method call,
even if the first method execution one has not completed yet.

The average method fan-out (<j)) is measured by a global program analysis through
object and method calls statistics. The run-time system marks each //obj with its depth
on the object creation tree. The depth of the root object is one and the depth of all
other //obj is equal to the depth of its creator plus one. The run-time system maintains
a table for the number of call performed on each depth, which is incremented on each
local method call. The method fan-out is derived from this table through the overall
ratio between consecutive depths.

SCOOPP minimises the run-time impact of the parameters estimation overhead in
three ways. First, granularity information is collected at class level, e.g., the v, \a and
<J) parameters are measured for each class of parallel objects. This approach is clearly
less costly than an instance-based approach and more accurate than a global one.
Second, when the overhead introduced to access the system clock to measure the
average method execution time is high (usually more than 1%) the frequency of
information retrieval is reduced; this excludes, however, the application start up
phase, since on that phase no information is available. Third, the parameters that are
estimated at run-time do not require inter-nodes communication, since the estimation
is locally performed and parameters information is only exchanged within requests
for remote object creation.

2.3 Packing Policies

Packing policies define "when" and "how much" to pack, e.g. the number of//obj that
should be packed in each grain, and the number of method calls to pack on each
message. These policies are usually grouped according to the structure of the
application: object pipelines, static object trees (e.g. object farming) and dynamic
object trees (e.g. work split and merge). The work here presented focus on packing
policies for pipelined algorithms and the next section evaluates its application to a
case study, the Eratosthenes sieve.

Packing Parallel Objects. The decision "when" to pack is taken based on the
average method execution time ((i), the average latency of a remote "null-method"
call (a) and the overhead of the method parameters passing (v). When the average
method execution time is excessively short, //obj should be packed, which occurs
when the overhead of a remote method call is higher than the average method

-733-

FEUP - Faculdade de Engenharia da Universidade do Porto

execution time, e.g., (a+v)>|i. This is the turnover point to pack //obj, where the
parallelism overhead becomes longer than the time spent on locally "useful work".

The decision of "how many" //obj to pack into a single grain (e.g., degree of object
packing or computation grain-size, Cp) is related to the a, v and |i parameters as seen
before, and also on the method fan-out (([)) and on the system computational load,
e.g., the number of grains per node (y). The computation grain-size should be
increased when the system presents high parallelism overhead (e.g., high a and v)
and be decreased on high average method execution time. The degree of object
packing should also be decreased when fan-out increases, since each method call
performs several intra-grain calls, and it can be increased when the number of grains
per node is high, to decrease parallelism overheads.

On pipelined applications, packing adjacent //obj makes the number of intra-grain
calls equal to the average number of objects in each grain, since the fan-out is close
to 1. When Cp//obj are packed together, each remote method call generates C method
calls, executing on Cp|a time. Under these conditions, the turnover point to decide
when to pack is reached when Cp =(a+v)/|a. This expression defines the minimum
number of //obj to pack on each grain to overcome the parallelism overheads. To
decrease parallelism overheads even more, SCOOPP increases the number of //obj on
each grain linearly with yby using the expression C =y(a+v)/\i.

Packing Method Calls. The decision "when" to pack method calls follows the same
rule as the one applied to pack objects, e.g., when (<x+v)>|i; this condition reflects
that the overhead to place a single remote call is higher than the remote method
execution time. In this case, several inter-grains calls should be packed to reduce
communication overheads.

The decision "how many" method calls to pack into a single message (e.g., degree
of method call packing or communication grain-size, Cm) is computed from the a, v
and |i parameters. Sending a message that packs Cm method calls has a time overhead
of (oc+Cmv) and the time to locally execute this pack is Cm(J.. Packing should be
performed such that (a+Cmv)<C,„|i, e.g., when the overhead to place a remote call is
lower than the time to locally execute the pack of method calls. Resolving the
equation gives the turnover point Cm=a/(|i-v).

When the average method execution time is close or smaller than the overhead of
the parameter passing (e.g., |i<=v), method calls should not be packed. However, this
rule can be relaxed if both method calls and //obj are packed.

Packing Parallel Objects and Method Calls. SCOOPP can simultaneously pack
method calls and //obj. However, when method calls are packed, the application
performance may benefit from a less //obj packing degree. In this case, SCOOPP
scales down the computation grain-size by using the expression Cp=y(a+Cniv)/(^Cm).

When the overhead of the parameters passing (v) is longer than the average
method execution time (|i), e.g., v>|a, the method calls packing factor should be
decreased. In this case, the method call packing is estimated as Cin=a/v.

To summarise, on pipelined applications, the [i/v ratio is the key to choose
between object and method calls packing. When v<|i the communication packing

-734-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

degree, in number of method calls per message is Cn =a/(|a-v), and the object packing
degree is decreased by the Cm factor, e.g., the number of //obj on each grain is
Cp=7(a+Cmv)/(|iC/n). When v>|j, the communication packing degree is Cm=ot/v and the
same Cp expression can be used to compute the number of//obj per grain.

3 SCOOPP Evaluation with the Eratosthenes Sieve

The Eratosthenes sieve is an algorithm to compute all prime numbers up to a given
maximum. The original algorithm is well known; although several faster algorithms
have been proposed [14] [15] [16], the original one is still the most adequate to
illustrate relevant features in parallel algorithms, since a parallel version is intuitively
obtained from the original sequential algorithm.

One simple parallel implementation is a pipelined algorithm containing all
computed prime numbers, where each element filters its multiples. Numbers are sent
to the pipeline on an increasing order. Each number that gets to the end of the
pipeline is a prime number and is appended as a new filter. Fig.l presents the sieve
processing flow for the numbers 3, 4 and 5.

o Parallel task

Message flow

Fig. 1. Parallel sieve of Eratosthenes processing numbers 3, 4 and 5

The Eratosthenes sieve has been chosen to show the relevant features of the
SCOOPP since it has a totally predictable behaviour, making it adequate to evaluate
the separate impact on the execution time of each parameter and packing approach.
Furthermore, it is scalable to large environments, if a large number is selected.

The Eratosthenes sieve has a large parallelism potential since each element of the
pipeline (e.g., sieve filter) can be a parallel task (e.g., a parallel object), which
originates a large number of fine-grained parallel tasks. It dynamically creates parallel
tasks and their number is dependent of the problem size. Table 1 presents the
parallelism degree of the sieve of Eratosthenes for several problem sizes.

Table 1. Parallelism degree of the Eratosthenes sieve several problem sizes

Problem
size

Number of
parallel tasks

Number of
messages

100 24 290
1.000 167 14292

10.000 1228 762862
100.000 9591 46224072

-735-

FEUP - Faculdade de Engenharia da Universidade do Porto

On a naive implementation of the sieve, each parallel task has a computation to
communication ratio of one integer division operation per message received, which is
a too low ratio for the generality of distributed memory machines. A slightly
optimised sieve was developed to increase this ratio and decrease the sieve sequential
workload, which sends blocks of 10 values between sieve filters on a single method
call. Each sieve filter marks the numbers that it filters and a block is merged with
another block when it has more 5 values marked. This optimisation decreases the
number of messages by a factor close to 10 and increases the computation to
communication ratio to a value close to 10 integer divisions per message received.

The next subsection discusses how a programmer based static grain-size adaptation
can increase this ratio. A second subsection shows performance results measured
using the SCOOPP dynamically grain-size adaptation. Both subsections present
performance results for an optimised sieve on a problem size of 100 000 values.

3.1 Programmer Based Grain-size Adaptation

This section shows how a programmer can adapt the grain-size of the sieve to
improve performance on several platforms. It presents the impact of the grain-size
choices on the number of //tasks and inter-//task messages. Finally, it presents the
execution times of the sieve for a number of grain-size choices and analyses the
impact of grain-size choices on the tested three platforms.

To adapt the grain-size in the sieve algorithm a parallel programmer may merge
sieve filters into a single parallel object and/or pack several parallel objects into a
single grain (e.g., a parallel task). Merging filters into a //obj requires some code
rewrite, while packing //obj into a grain is less demanding: minor code modifications,
mainly to adapt the load distribution policy to perform a block distribution. Merging
filters into a //obj removes overheads of intra-grain object creation and method calls,
leading to lower execution times (e.g., sequential workload). However, it requires
complex code to support dynamic grain-size modifications.

Both approaches adapt the computational grain-size, increasing the average
number of operations per received value on each //task (e.g., //task computation to
communication ratio) and reducing the overall number of //tasks. On the sieve, this
number of operations is directly proportional to the number of filters on each //task
and is hereafter referred to as the //task computation granularity, in number of filters
per parallel task. However, this increase may not lead to an acceptable performance,
namely there may be not enough //tasks and the sieve may generate an excessive
number of messages. Packing several method calls into a single message reduces the
messages traffic, decreasing the communication overhead. On the optimised sieve
under study, the number of values per message is tenfold the number of method calls
per message, since each method call sends a block of 10 values, and is hereafter
referred to as the inter-//task communication granularity.

-736-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 2 presents the number of parallel tasks and inter-tasks messages required to
compute the prime numbers up to 100 000, for several //task computation and
communication granularities. The grain-sizes values were selected to show
representatives values of the sieve execution times.

Table 2. Sieve parallelism degree for several computation and communication granularities

Inter-tasks communication granularity
(values per message)

10 50 100 500 1000

T
as

k
co

m
pu

ta
ti

on

gr
an

ul
ar

it
y

(f
ilt

er
s

pe
r /

/ta
sk

)

1 9591 4 894 536 1 005 717 518 063 118 860 67 100
6 1599 845 518 174 272 89 192 19 569 10 856

25 384 236 692 45 144 24 013 6 364 3 354
100 96 72 750 16 175 8318 1 873 889
400 24 21 406 4 678 2 395 526 282
1600 6 8 572 1 802 915 194 102
6400 2 5 480 1 110 558 115 59
9591 1 0 0 0 0 0

// tasks Inter-tasks messages

Fig.2 presents the sieve execution times as a function of both the computation and
communication granularities. These figures present the execution times on 4 and 7
cluster nodes, on 4 and 16 PowerXplorer nodes and on 14 and 56 MultiCluster nodes.
On these experiments the measured values were obtained by using one sieve filter per
//obj and grain packing was performed by packing several //obj into a single //task.
The MultiCluster can not run sieves with grains smaller than 3 sieve filters, due to
memory space limitations. All graphs are scaled to the sieve execution time on a
single node.

On all these targets platforms the computation granularity has a strong impact on
the sieve performance: when the computation grain-size is too fine or too large the
performance penalties are considerably heavy. Too fine grains can lead to a large
number of //tasks and the associated overhead costs; too large grains may not use all
the available processing nodes.

Communication grains also have an impact on the overall performance: on smaller
systems, fine grains (short messages) introduce a penalty, since they generate an
excessive number of messages between pairs of nodes; on large systems, shorter and
more frequent messages favour load balancing and reduce start-up times.

These results show how relevant is the right choice for both the computation and
communication grain-size. However, they also show how time consuming a
programmer based approach can be due to the dynamic nature of the parallel tasks of
the sieve; it requires long experimental work (to test a wide range of computation and
communication grain-sizes) and/or a deep analysis of both the algorithm and target
platform features.

-737-

FEUP - Faculdade de Engenharia da Universidade do Porto

15.0

13,5 -

12,0 -

(0
10.5 -

(U 9,0 -

at
E 7.5 -

c o 6,0 -

4,5 -

X
ill 3,0 -

1.5 -

0.0 - -—

1

10 Values per message
50 Values per message
100 Values per message
500 Values per message
1000 Values per message

10 100 1000

Computation grain-size (filters)

a) 4 x 350 MHz Pentium II (in Cluster)

15,0

13,5

12,0
_

10,5
o

a,o
4>

£ 7,5

c
o 6,0

s 4,5
X

111 3.0

1,5

0,0

10 Values per message
50 Values per message
100 Values per message
500 Values per message
1000 Values per message

n

10 100 1000

Computation grain-size (filters)

b)7x350MHzPentium II(in Cluster)

S 27
v X
m 18

—* 10 Values per message
—♦ 50 Values per message
---"—100 Values per message
--• - 500 Values per message
—■- 1000 Values per message

72

i

63 -

54

45

36
>.* *

-* 10 Values per message
--♦■- - 50 Values per message
--• 100 Values per message
--»- 500 Values per message

- 1000 Values per message

NT

10 100 1000
Computation grain-size (filters)

c) 4 x 66 MHz PPC 601 (in PowerXplorer)

10 100 1000
Computation grain-size (filters)

d) 16 x 66 MHz PPC 601 (in PowerXplorer)

1200

1080

960

10 Values per message
50 Values per message
100 Values per message
500 Values per message
1000VaJues per message

1200

1080

960

f 840
c
o
So 720
V)

I 600 -

I 480-

1 36°
12 240 .

120 -

. . .. */
10 Values per message
50 Values per message
100 Values per message

■ 500 Values per message
1000 Values per message

J
^

y

10 100 1000
Computation grain-size (filters)

e) 14 x 30 MHz T805 (in MultiCluster)

10 100 1000 10000
Computation grain-size (filters)

f) 56 x 30 MHz T805 (in MultiCluster)

Fig. 2. Sieve execution times for a programmer based grain-size adaptation

-738-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

3.2 Dynamic Grain-size Adaptation

One of the main goals of SCOOPP is dynamic scalability through grain packing. To
tests de effectiveness of the SCOOPP granularity control, an evaluation of the ability
to dynamically pack sieves filters was performed. This evaluation compares the
lowest execution times - experimentally measured in the previous section - with the
execution times obtained by running the sieve on several target platforms, without
any code change and relying on the granularity control mechanisms in the SCOOPP
run-time system.

Table 3 summarises the measures above mentioned. On the SCOOPP strategy, the
computation and communication grain-sizes were obtained by computing the number
of //obj on each //tasks and the number of method calls on each message, according
the expressions on section 2.3. A circular load balancing strategy spreads grains
through the nodes and can place several grains per node.

The P column shows the number of processors used for each test. For both the
programmer based and SCOOPP grain-size adaptation several parameters are given:
T is the execution time in seconds; Sp is the speedup obtained comparing with the
same sieve on a single node; y is the number of grains placed on each node; C is the
degree of the computation packing, in number of //obj (filters) per //task (e.g., the
computation grain-size) and Cin is the degree of the communication packing, in values
per message (e.g., the communication grain-size). Cin is tenfold the number of method
calls per message, since each method call sends a block of 10 values. On the
SCOOPP methodology Cp and Cin are mean values, since they are computed
dynamically and change during run-time.

The SCOOPP methodology results also include 3 columns with the estimated
parameters, in microseconds: the remote method call latency (a), the overhead of the
method parameters passing (v) and the average method execution time (|i). The latter
two parameters are also mean values.

Table 3. Comparing sieve execution times programmer based and SCOOPP

Programmer based SCOOPP

P T Sp Y cn C,r, T Sp Y cn <v a V r1

Cluster
4 3.86 3.8 24 100 500 3.96 3.7 28 86 560

500 10 5 7 2.52 5.9 27 50 500 2.66 5.6 21 65 560

PowerXplorer
4 23.2 3.9 48 50 100 28.0 3.2 19 126 50

300 72 18 16 6.9 13.0 12 50 100 8.0 11.3 12 50 50

MultiCluster
14 135.6 9.6 14 50 100 162.3 8.0 21 34 20

530 82 440
56 44.5 29.2 14 12 50 44.8 29.0 11 16 20

These results show the effectiveness of the SCOOPP methodology to scale the
sieve application on several target platforms. The methodology was able to
dynamically increase grain-sizes to obtain speedups of the same order of magnitude
as a programmer-based approach. Moreover, execution times obtained through the
SCOOPP methodology are often in a 20% range of the optimal values, showing that
this methodology successively removes most of the parallelism overheads. The
remaining overhead is usually due to a choice of a too large or too small number of

-739-

FEUP - Faculdade de Engenharia da Universidade do Porto

grains. However, removing this overhead requires the knowledge of the full number
of //task or some guessing through experiments, as the ones performed on the
previous section. These alternatives increase development costs and are not feasible
on applications where the number of//tasks is strongly dependent on input data.

When computation and communication grain-sizes are controlled through packing
(both object and method calls packing) the total number of created objects and
method calls remains the same. To reduce this sequential workload - due to the object
oriented paradigm - the programmer can "pack" by merging several //obj into a
single //obj (e.g., pack several filters into a single //obj) and by grouping blocks of
values on a single method call. Fig.3a and 3b show the impact of merging several
filters into a single //obj and increasing the block size on method calls. The graphs
show execution times on a single cluster node and the ideal execution time on 4
cluster nodes, for several computation and communication grain-sizes.

15,0

13.5

~ 12,0 <n
~o
S 10,5

g 9,0 '

c 6,0
o
3 4,5
u
8 3.0
UJ

1,5 -

0,0 -

- -• -1 Value per message
■-• 3 Values per message
* 10 Values per message

—* 100 Values per message

15,0

13,5 -

* 12,0 -
~° •
g 10.5-
o
g 9,0 - .

1 7,5-
c 6.0 -
o
1 4.5 „

§ 3,0
Ll! *~.

1,5 -

0.0 •-

--• 1 Value per message
-• - 3 Values per message
- * 10 Values per message
- -• 100 Values per message

10 100 1000 10000
Computation grain-size (filters per //obj)

a) "Packing" on 1 cluster node

10 100 1000 10000
Computation grain-size (filters per //obj)

b) Ideal "packing" on 4 cluster nodes

Fig. 3. Execution times for partially optimised sieves through method call and object merging

When these optimisation approaches are followed to supply SCOOPP with
pre-optimised parallel versions, SCOOPP is also able to improve the overall
performance. Fig.4a presents the times obtained on programmer partially optimised
sieves, with communication grain-sizes of 10 and 100 values per message; Fig.4b
shows their behaviour on the SCOOPP system.

15,0 --* --- 15,0 -

13,5 * 10 Values per message 13,5 - * 10 Values per message

~ 12,0 ---* 100 Values per message ^ 12,0 -• 100 Values per message
■D
C
o u
<D
V)

10,5

9,0

c
o
(J
Oi

10,5

9,0

E
c
o
3

7,5

6,0 -

4,5 - ^ r-
I
c
o
3

7,5

6.0

4,5 *

X
UJ

3,0 -

1,5

0,0
1 10 100 1000 10000

s 3,0 ♦.

1,5 ■

0,0
1

- ^~»

10 100 1000 100
Computation grain-size (filters per//obj) Computation grain-size (filters per//obj)

c)Programmerbasedon4 cluster nodes d) SCOOPP on 4 cluster nodes

Fig. 4. Programmer based and SCOOPP implementation on partially optimised sieves

-740-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

These execution times show that the SCOOPP values are very close to the "ideal"
ones in Fig.3b. These results reinforce the effectiveness of the SCOOPP
methodology, showing that SCOOPP can efficiently scale pipelined applications,
even when these are previous and partially optimised by the programmer.

Conclusion

The commercial success of massively parallel systems was slowed down mainly
due to the lack of adequate tools to support automatic mapping of the applications
into distinct target platforms, without significative loss of efficiency. The overhead on
programmers was too high and the available tools were inefficient. SCOOPP attempts
to overcome these limitations: it provides dynamic and efficient scalability of object
oriented parallel applications across several target platforms, packing grains and
messages, without any code modification.

The presented results show the effectiveness of the SCOOPP methodology when
applied to pipelined applications on several target platforms. The methodology is able
to dynamically increase grain-sizes and to obtain speedups of the same order of
magnitude as a programmer-based approach. Moreover, execution times obtained
through the SCOOPP methodology are often in a 20% range of the optimal values,
showing that this methodology successively removes most of the parallelism
overheads.

Programmer based grain-size adaptation is not a competitive alternative to
SCOOPP, it requires a wide range of tests on each target platform and each test is
highly time consuming (as presented in Fig.2).

The performance penalties imposed by SCOOPP have a low impact on application
execution time, and they are mainly due to the run-time requirements to estimate the
application dependent parameters to adapt the computation and communication
grain-sizes. A static adaptation can provide the correct grain-size at the beginning of
the running, but a dynamic strategy requires some time to evaluate the application
features and to react accordingly.

Dynamic scalability of the parallel code version largely overcomes this small
performance cost. It is the most promising approach to scale applications where task
granularity is strongly dependent on input data. When compile time estimates of task
granularity are not accurate, it may decrease the cost of the parallel code development
and improve the code reutilization on multiple target platforms.

Current work includes development of packing policies for static and dynamic
object trees, and applied to less controlled application environments (such as
computer vision applications).

-741-

FEUP - Faculdade de Engenharia da Universidade do Porto

References

[I] Kruatrachue, B., Lewis, T.: Grain Size Determination for Parallel Processing, IEEE
Software, Vol. 5(1), January (1988)

[2] Gresoulis, A., Yang, T.: On the Granularity and Clustering of Direct Acyclic Graphs,
IEEE Transactions on Parallel and Distributed Systems, Vol. 4(6), June (1993)

[3] High Performance Fortran Forum: HPF language specification, Technical Report CPRPC-
TR92225, Center for Research on Parallel Computation, Rice University, Tex., (1993)

[4] Beckman, P., Gannon, D., Johnson, E.: HPC++ and the HPC++ Lib. Toolkit, White
Paper, www.extreme.indiana.edu/hpc++, (1997)

[5] Andersen, A.: A General, Fine-Grained, Machine Independent, Object-Oriented
Language, ACM SIGPLAN Notices, Vol. 29(5), May (1994)

[6] Sobral, J., Proenca, A.: Dynamic Grain-Size Adaptation on Object-Oriented Parallel
Programming - The SCOOPP Approach, Proceedings of the 2nd Merged IPPS/SPDP
1999, Puerto Rico, April (1999)

[7] Sobral, J., Proenca, A.: ParC++: A Simple Extension of C++ to Parallel Systems,
Proceedings of the 6th Euromicro Workshop on Parallel and Distributed Applications
(PDP'98), Madrid, Spain, January (1998)

[8] Sobral, J., Proenca, A.: A Run-time System for Dynamic Grain Packing, Proceedings of
the 5th International EuroPar Conference (Euro-Par'99), Toulouse, France, September
(1999)

[9] Mohr, E., Kranz, A., Halstead, R.: Lazy Task Creation: A Technique for Increasing the
Granularity of Parallel Programs, IEEE Transactions on Parallel and Distributed
Processing, Vol. 2(3), July (1991)

[10] Goldstien, S., Schauser, K., Culler, D: Lazy Threads: Implementing a Fast Parallel Call,
Journal of Parallel and Distributed Computing, Vol. 37(1), August (1996)

[II] Karamcheti, V., Plevyak, J., Chien, A.: Runtime Mechanisms for Efficient Dynamic
Multithreading, Journal of Parallel and Distributed Computing, Vol. 37(1), August (1996)

[12] Taura, K., Yonezawa, A.: Fine-Grained Multithreading with Minimal Compiler Support -
A Cost Effective Approach to Implementing Efficient Multithreading Languages,
Proceedings of the ACM SIGPLAN Conference on Programming Language Design &
Implementation (CPLDI'97), Las Vegas, July (1997)

[13] Lopez, P., Hermenegildo, M., Debray, S.: A Methodology for Granularity Based Control
of Parallelism in Logic Programs, Journal of Symbolic Computation, Vol. 22, (1998)

[14] Pritchard, P.: Linear Prime-Number Sieves: A Family Tree, Science of Computer
Programming, Vol. 9, (1987)

[15] Xuedong, L.: A Practical Sieve Algorithm Finding Prime Numbers, Communications of
the ACM, Vol. 32(3), (1989)

[16] Dunten, B., Jones, J., Sorenson, J.: A Space-Efficient Fast Prime Number Sieve,
Information Processing Letters, Vol. 59, (1996)

-742-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The Distributed Engineering Framework TENT

Thomas Breitfeld2, Tomas Forkert1, Hans-Peter Kersken1

Andreas Schreiber1, Martin Strietzel1, Klaus Wolf2

i

2

DLR, Simulation- and Softwaretechnology, 51170 Cologne, Germany,
<first name>.<last nameX8dlr.de, http://www.sistec.dlr.de,

Phone: +49-2203/601-2002, Fax: +49-2203/601-3070
GMD, Institute for Algorithms and Scientific Computing, Schloss Birlinghoven,

53754 Sankt Augustin, Germany
<first name>.<last nameX5gmd.de, http://www.gmd.de/scai,

Phone: +49-2241/14-2557, Fax: +49-2241/14-2181

Abstract. The paper describes TENT, a component-based framework
for the integration of technical applications. TENT allows the engineer
to design, automate, control, and steer technical workflows interactively.
The applications are therefore encapsulated in order to build compo-
nents which conform to the TENT component architecture. The engineer
can combine the components to workflows in a graphical user interface.
The framework manages and controls a distributed workflow on arbi-
trary computing resources within the network. Due to the utilization
of CORBA, TENT supports all state-of-the-art programming languages,
operating systems, and hardware architectures. It is designed to deal with
parallel and sequential programming paradigms, as well as with massive

' data exchange. TENT is used for workflow integration in several projects,
for CFD workflows in turbine engine and aircraft design, in the modeling
of combustion chambers, and for virtual automobile prototyping.

1 Introduction

The design goal of TENT is the integration of all tools which belong to the typi-
cal workflows in a computer aided engineering (CAE) environment. The engineer
should be enabled to configure, steer, and control interactively his personal pro-
cess chain. The workflow components can run on arbitrary computing resources
within the network. We achieved this goals by designing and implementing a
component-based framework for the integration of technical applications.

TENT is used as integration platform in several projects. In the SUPEA
project we developed a simulation environment for the analysis of turbocompo-
nents in gas turbines. An integrative environment for the development of virtual
automobile prototypes is under construction at the AUTOBENCH project at
GMD. In the AMANDA project, TENT is used for the integration of multidis-
ciplinary tools for the simulation of the static aeroelastic of a complete aircraft.
Finally, at the BKM project several physical models for the simulation of com-
bustion chambers are coupled with the central simulation code using TENT.

From the requirements of these projects we can derive the main requirements
of the integration system:

743.

FEUP - Faculdade de Engenharia da Universidade do Porto

— Easy integration of existing CFD-codes, finite element-codes, pre- and post-
processors;

— Integration of sequential and parallel codes (MPI, PVM, or HPF);
— Efficient data exchange between the tools;
- Integration of tightly coupled codes;
- Interactive control and design of the workflows;
- Interactive control of the simulation.

1.1 Related Work

The development of frameworks, integration, or problem solving environments
(PSE) is focussed in many scientific projects. The interactive control of simula-
tions in combination with virtual reality environments is demonstrated within
the collaborative visualization and simulation environment COVISE [8]. Actual
projects concentrate on the utilization of CORBA [4] for the organization of
distributed systems. PARDIS [5] introduced an improved data transfer mecha-
nism for parallel applications by defining new parallel data objects in CORBA.
A very similar approach is addressed in the ParCo (parallel CORBA) project
[11], The integration framework TENT is a CORBA-based environment, which
defines its own component architecture for a distributed environment and a new
data exchange interface for efficient parallel communication on top of CORBA.

TENT-SDK

Component
Architecture

IDL-
Interfaces

Data
Exchange
Interface

Devel.
Support

Libs

TENT-Base System

GUI
Master
Control
Process

Factories Name
Service

TENT-Facilities

Coupling Data
Management

Job
Management

TENT - Components

CFD-
Wrapper

FEM-
Wrapper

VR-
Wrapper

Visualization
Wrapper

Fig. 1. Packages of the Integration System TENT

2 Base concepts of the framework

The TENT framework consists of four different packages. This structure is dis-
played in figure 1. The Software delopment kit summarizes all interface defini-
tions and libraries for the software development with TENT. The base system

-744-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

includes all basic services needed to run a system integrated with TENT. The
facilities are a collection of high-level services and the components consist of
wrappers and special services for the integration of applications as TENT -
Components.

2.1 The Software Development Kit

TENT defines a component architecture and an application component inter-
face on top of the CORBA object model. The TENT component architecture is
inspired by the JavaBeans specification [3] and the Data Interchange and Syner-
gistic Collateral Usage Study framework (DISCUS) [15]. The interface hierarchy
is shown in figure 2. The data exchange interface as part of the SDK allows the
parallel data exchange between two TENT - components. It can invoke a data
converter, which automatically converts CFD-data between the data formats
supported by the integrated tools.

«Interlaces «Interface»
laenatyObject Streamaole

from THMinUly) (fiomT.ntStr«»m)
0QWÜ: Identity

*extemaiiaO
*ntemalueO

«interface«
Component

(from TtniConvontnl) «Interface»
#name :smng DataObjeci
&type : strng (Irom TsntDii»!
^subtype:stino
ppropertes: DataObjeei ♦sen;

♦getrj
+openO ♦descrbeO
+ciose 0
+Oesroy()

\
«interface» «interface»

Container Factory
(1mm T.ntComponeni) flrom T.nlCompoitnt)

^logtjer
^conversionTraOer ♦cfeafeComponentf)

♦ceaBNametJComponentQ
♦eiowseO
♦getCom pone n6taner()
VreafeComponentSarterO

Fig. 2. TENT Framework Interface Hierarchy (UML notation)

2.2 TENT - Base System

The TENT system components form an engineering environment out of a bunch
of stand alone tools. All system components are implemented in Java. The Mas-
ter Control Process (MCP) is the main entity within TENT. It realizes and
controls system tasks such as process chain management, construction and de-
struction of components, or monitoring the state of the system.

■745-

FEUP - Faculdade de Engenharia da Universidade do Porto

The factories run on every machine in the TENT framework. They start,
control, and finish the applications on their machine. The name service is the
standard CORBA service. The relations between the services are shown in figure
3.

2.3 TENT Facilities

In order to support high-level workflows the system offers more sophisticated fa-
cilities. For coupling multi-disciplinary simulation codes, working on numerical
grids, TENT will include a coupling server. This server offers the full functional-
ity of the coupling library MpCCI1 (former CoColib) [1]. MpCCI coordinates the
exchange of boundary informations between simulation applications working on
neighbouring grids. We are working on a datamanagement service, which stores
and organizes the simulation data of typical CFD or finite element simulations.
For the virtual automobile prototypes a dataserver is already in production,
that can hold the data sets for allowing a feedback-loop between a virtual re-
ality environment, a crash simulator and the appropriate preprocessing tools.

Fig. 3. Architectural Overview of TENT

2.4 TENT Components

The applications must be encapsulated by wrappers to access their functionality
in TENT by CORBA calls. Due to the level of the accessibility of the sources,
the wrapper can be tightly coupled with the application, e.g. linked together

1 MpCCI is a trademark owned by GMD.

746-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

with it, or must be a stand alone tool, that starts the application via system
services. Depending on the wrapping mechanism the communication between
the wrapper and the application is implemented by, e.g., direct memory access,
IPC mechanisms, or file exchange.

3 Applications

In several projects the TENT framework is used for the integration of engineering
workflows. Originally TENT was developed in the SUPEA project for integrating
simulation codes to build a numerical testbed for gas turbines.

TENT;~ newProject;pn

£«•: Component Repository

• £~ Component Factory

€**i*aramre.ta Kp.dlr.di

9 *§* a* SB'K to dir d

•">:■:• SE.SimEngm

^■3=n. „

©■K-t-r »P PostPioc

©■ «4* CV_ComerieT

©- •*&*■. tnor sistec kp dir de

©- |1^ TT_Locoer

•*E$s SE_S«nEngine

®-ftvl» PP_PostProc

^Sj»; Vl_Vreualii3t«3n

«-^fpA.PartiHoner

e-*i»-CV_Convefler

Component Controls 'frl IlihirTji«- i^.rbsrtBM»

■VJlY)tWrt*R ■-

Values
Roo- ODject
AppContigPrope
Compone-HGUfE .
instf Properties
Ou:&ulProoen«5
StanOBnlPtOBem ,
CorntnandFile
Cort<jFiie

GUlfT-N)
iPartDisplay
iPortProgram

■ Processors

de Si' tent.gui.Part ..

/■xxTw/-niku>Projec1s/ ..
/nome'-niku/P rojecls'

SHOST 0.0

JTENT_HOME/TENT_opp string

;_„ .Typ« „.,.
TT_Dala Object
TT_Data Object

■string
TT_Data Object'
ff_Data6bject
;TT_bataOWect

"Stnno

-string

»sr Conlrom

Partition «tandatom

TurtHnead.flE Turt«ne3d pP.ihor

E>*-tn*tantiBte

Remove

OlacoRoecl

Connect to ...

t>ine3D Pa. K>Ki[l] INFO. Number ot böcKs(oW=>new) 6 => 9
toineSD Pa loki[1) INFO

Bine3D Pz lok)[l] INFO minoiltextra = 0.977121, maxdrtlextra = 1.053E5
tiie3D Pa k>ki[1] INFO mtntrnextra = 2 6533, maxttmextra = 2 8B22

binc3D Pa.loto[1] INFO mindill = 0 996216, maxdilt = 1.00156
bir*3D Pa k»ki[1J INFO' mintme = 0 8206, maxtme = 0 625
bineSD Pa loki[1) INFO
bineSD Pa tolctH INFO Urn-processor timelwithout extra *ork)= QB23717
bineSD Pa tOKi|1] INFO Uni-processct time(*itri exlra wo'k) - 2.71645
BineSD Pa tokt|1) INFO Um-processor Mtlops = 12Q
bineSD Pa loKi[1j INFO No of nodes = A

Fig. 4. TENT Control GUI with (from left to right, beginning in the upper left corner)
Component Repository, Property Panel, Component Controls, Wire Panel, and Logger
Information

■747-

FEUP - Faculdade de Engenharia da Universidade do Porto

In this project several preprocessors, simulation tools, postprocessors, and
visualization tools are integrated by TENT, and can be combined to form work-
flows. A typical SUPEA workflow is designed in the GUI snapshot at figure 4.
The workflow is displayed at the Wire Panel. Each icon shows one application
in the workflow. The wires between the icons describe the control flow. The
most left icon is the master control process which starts and control the flow.
It starts the simulation engine, which requests the decomposed grid data from
the preprocessor. After a user defined number of iteration steps the simulation
engine sends the actual physical data set to a postprocessor, which finally sends
a visualizable data file to the visualizer at the end of the workflow. After the
first run the workflow repeats without calling the preprocessor again as often as
the user choose in the bottom line of the GUI.
The workflow can be freely designed by dragging the applications displayed in
the Component Repository and dropping them to the Wire Panel. Here the con-
trol flow is defined by wiring the icons interactively. Clicking on the icons in the
Wire Panel shows their editable properties in the Property Panel in the upper
right corner of the GUI.

In the AMANDA project TENT will be used for the integration of sev-
eral simulation, pre-, postprocessing, control, and visualization tools. The aim
is to form an environment for the multi-disciplinary aeroelastic simulation of
an aircraft in flight manoeuvres. Therefore the CFD-simulation of the surround-
ing flow must be coupled with a finite element analysis of the wing structure.
Logic components will be included in TENT to allow dynamic workflows. In the
next paragraph the aspect of software integration at the AMANDA project is
described in more detail.

The virtual automobile prototype is the aim of the project AUTOBENCH
[13]. In this project TENT is used to allow the interactive control of a crash
simulation from within a virtual reality environment.

3.1 The AMANDA-Workflows

Airplane Design For the simulation of a trimmed, freely flying, elastic airplane
the following programs have to be integrated into TENT:

- a CFD code, TAU [12] and FLOWer [6],
- a structural mechanics code (NASTRAN[10]) and a multi-body program

(SIMPACK [7]), to calculate the deformation of the structure,
- a coupling module, to control the coupled fluid-structure computation,
- a grid deformation module, to calculate a new grid for the CFD simulation,
- a flight mechanics/controls module (build using an Object-Oriented mod-

elling approach [9]), to set the aerodynamic control surface positions,
- visualization tools.

Figure 5 shows a complete AMANDA airplane design workflow to be integrated
in TENT. In this case TAU is choosen for the CFD simulation. The process
chain is hierarchically structured. The lowest level contains the parallel CFD

■748-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Ijj Flight
Mechanics

©

tömtro) |* -

©

%
0

flight mechanics

®-
Grid

Deformation

pcmMlL-

narta ■ m
vT : HTT

©O- NASTRAN

CH

TAU subsystem

TAU
Postprocessor

© ®
,

Grid
Generator

PATRAN

© 6 ©Ö
1

© 1 1

WTV?

Visualizer
for NASTRAN

©
TPVt
Visualizer
for TAU

base geometry flight attitude flap position

| | wrapper (base component)

I J subsystem (container)

□ : | control unit
Icontroli ill (ompan

(UKI explicit conlrol

coupled simulation

Oats transfer Onwot the ajbiyiteir]

data transfer (icion lutnynem bOLnc

implicit control (event sender)

implicit control (event receiver)

control attribute

Fig. 5. Process chain for coupled CFD/structural mechanics/flight control system.

solver only. This CFD-subsystem consists of the flow solver itself and auxiliary
programs to handle mesh adaptation. The next level, the aeroelastic-subsystem,
comprises the CFD solver, the structural mechanics or multi-body code, and the
grid deformation module. For the solution of the coupled non-linear aeroelastic
equations a staggered algorithm is implemented in the control process [2]. The
highest level consists of the flight mechanics module coupled to the aeroelastic-
subsystem. Each single code is additionally accompanied by its own visualization
tool. The computation of a stable flight state typically proceeds as follows:
Starting by calculating the flow around the airplane, the pressure forces on the
wings and the nacelle are derived. Theses forces are transfered to the struc-
tural mechanics code and interpolated to the structural mechanics grid using the
MpCCI library. This code calculates the deformation of the structure which in
turn influences the flow field around the airplane. At a final stage it is planned to
extend the system and feed the calculated state into a flight mechanics/controls
module to set the control surfaces accordingly and to obtain a stable flight
position. This changes the geometry of the wings and requires therefore the
recalculation of the flow field and the deformation.

Turbine Design A new aspect in virtual turbine design is the simulation of
flow inside the turbine in consideration of the heat load on the blades and the

749-

FEUP - Faculdade de Engenharia da Universidade do Porto

cooling. The numerical modeling of the position and size of cooling channels and
holes in the blades are essential for the layout of an air-cooled turbine.

The CFD code TRACE [14], a 3D-Navier-Stokes-Solver for the simulation of
steady and unsteady multistage turbomachinery applications, and a heat con-
duction problem solver (NASTRAN) are coupled to simulate the airflow through
the turbine together with the temperature distribution inside the blades. For the
coupling of the flow simulation and the heat conduction a stable coupling algo-
rithm as been developed where TRACE delivers the temperatures of the air
surrounding the blade and the heat transfer coefficients as boundary conditions
to NASTRAN which in turn calculates the temperature distribution inside the
blade. The temperature at the surface of the blade is returned to TRACE as
boundary condition for the airflow.

4 Conclusions

The integration framework TENT allows a high-level integration of engineering
applications and supporting tools in order to form static as well as dynamically
changeable workflows. TENT sets up, controls, and steers the workflow on a
distributed computing environment. It allows the integration of parallel, or se-
quential code in most common programming languages and on most common
operating systems. CORBA is used for communication and distributed method
invocation. Additionally a fast parallel data exchange interface is available. At
the end of 1999 TENT will be available as a freely distributed software via the
Internet. TENT is already used for integration in several scientific engineering
projects with an industrial background.

Acknowledgments

The simulation codes in the AMANDA project are provided by Johann Bals
and Wolf Krüger (SIMPACK), Armin Beckert (coupling of TAU and NAS-
TRAN), Thomas Gerholt (TAU), Ralf Heinrich (FLOWer), and Edmund Kiigeler
(TRACE), all working at the DLR.
The MpCCI library is developed by Regine Ahrem, Peter Post, and Klaus Wolf
(all at GMD).
The simulation codes in the SUPEA project are provided by Frank Eulitz (TRACE,
at DLR), Harald Schütz (TRUST, at DLR), Georg Bader (at TU Cottbus), and
Ernst von Lavante (at Uni/GH Essen).

References

1. Regine Ahrem, Peter Post, and Klaus Wolf. A communication library to couple
simulation codes on distributed systems for multiphysics computations. In Pro-
ceedings of ParCo99, Delft, August 1999.

■750-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

2. Armin Beckert. Ein Beitrag zur Strömung-Struktur-Kopplung für die Berech-
nung des aeroelastischen Gleichgewichtszustandes. ISRN DLR-FB 97-42, DLR,
Göttingen, 1997.

3. Graham Hamilton (ed.). JavaBeans API Specification. Sun Microsystems Inc.,
July 1997.

4. Object Management Group. The Common Object Request Broker: Architecture
and Specification. OMG Specification, 2.2 edition, February 1998.

5. Katarzyna Keahey and Dennis Gannon. PARDIS: a parallel approach to CORBA.
In Proceedings of IEEE 6th International Symposium on High Performance Dis-
tributed Computing, Portland, OR., August 1997.

6. Norbert Kroll. The National CFD Project Megaflow - status report. In H. Körner
and R. Hilbig, editors, Notes on numerical fluid mechanics, volume 60. Braun-
schweig, Wiesbaden, 1999.

7. Wolf Krüger and Wilhelm Kortüm. Multibody simulation in the integrated design
of semi-active landing gears. In Proceedings of the AIAA Modeling and Simulation
Technologies Conference. Boston, 1998.

8. Ulrich Lang and Dirk Rantzau. A scalable virtual environment for large scale
scientific data analysis. In Future Generation Computer Systems, volume 14, pages
215-222. Elsevier Science, 1998.

9. D. Moormann, P. J. Mosterman, and G. Looye. Object-oriented computational
model building of aircraft flight dynamics and systems. Aerospace Science and
Technology, 3:115-126, April 1999.

10. Nastran. http://www.macsch.com.
11. Thierry Priol and Christoph Rene. Cobra: A CORBA-compliant programming

environment for high-performance computing. In David Protchard and Jeff Reeve,
editors, Euro-Par'98 Parallel Processing, number 1470 in Lecture Notes in Com-
puter Science, Southampton, UK, September 1998. Springer.

12. Dieter Schwamborn, Thomas Gerholt, and Roland Kessler. DLR TAU code. In
Procedings of the ODAS-Symposium, June 1999.

13. Clemens-August Thole, Sven Kolibal, and Klaus Wolf. AUTOBENCH: Environ-
ment for the Development of Virtual Automotive Prototypes. In Proceedings of
2nd CME-Congress (to appear), Bremen, September 1999 1999.

14. Dirk Thorsten Vogel and Edmund Kügler. The generation of artificial counter ro-
tating vortices and the application for fan-shaped film-cooling holes. In Proceedings
of the Uth ISABE, ISABE-Paper 99-7144, 1999.

15. Ron Zahavi and Thomas J. Mowbray. The essential CORBA: Systems Integration
Using Distributed Objects. John Wiley & Sons, New York, August 1997.

■751

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Suboptimal Communication Schedule for
GEN_BLOCK Redistribution

Hyun-Gyoo Yook and Myong-Soon Park

Dept. of Computer Science & Engineering, Korea University,
Sungbuk-ku, Seoul 136-701, Korea

{hyun, myongsp}@iLab.korea.ac.kr

Abstract. This article is devoted to the redistribution of one-dimensional arrays
that are distributed in a GEN_BLOCK fashion over a processor grid. While
GEN_BLOCK redistribution is essential for load balancing, prior research
about redistribution has been focused on block-cyclic redistribution. The
proposed scheduling algorithm exploits a spatial locality in message passing
from a seemingly irregular array redistribution. The algorithm attempts to
obtain near optimal scheduling by trying to minimize communication step size
and the number of steps. According to experiments on CRAY T3E and IBM
SP2, the algorithm shows good performance in typical distributed memory
machines.

1. Introduction

The data parallel programming model has become a widely accepted paradigm for
programming distributed memory multicomputer. Appropriate data distribution is
critical for efficient execution of a data parallel program on a distributed memory
multicomputer. Data distribution deals with how data arrays should be distributed to
each processor. The array distribution patterns supported in High Performance Fortran
(HPF) are classified into two categories — basic and extensible. Basic distributions
like BLOCK, CYCLIC, and CYCLIC(n) are useful for an application that shows
regular data access patterns. Extensible distributions such as GEN_BLOCK and
INDIRECT are provided for load balancing or irregular problems [1].

The array redistribution problem has recently received considerable attention. This
interest is motivated largely by the HPF programming style, in which science
applications are decomposed into phases. At each phase, there is an optimal
distribution of the arrays onto the processor grid. Because the optimal distribution
changes from phase to phase, the array redistribution turns out to be a critical
operation [2][11][13].

Generally, the redistribution problem comprises the following two subproblems
[7][11][13]:

+ This research was supported by KOSEF under grant 981-0925-130-2

-753-

FEUP - Faculdade de Engenharia da Universidade do Porto

• Message generation: The array to be redistributed should be efficiently scanned or
processed in order to build all the messages that are to be exchanged between
processors.

• Communication schedule: All the messages must be efficiently scheduled so as to
minimize communication overhead. Each processor typically has several messages
to send to all other processors.

This paper describes efficient and practical algorithms for redistributing arrays
between different GEN_BLOCK distributions. The "generalized" block distribution,
GEN_BLOCK, which is supported in High Performance Fortran version 2, allows
contiguous segments of an array, of possibly unequal sizes, to be mapped onto
processors [1], and is therefore useful for solving load balancing problems [14]. The
sizes of the segments are specified by values of a user-defined integer mapping array,
with one value per target processor of the mapping.

Since the address calculation and message generation processes in GEN_BLOCK
redistribution are relatively simple, this paper focuses on an efficient communication
schedule. The simplest approach to designing a communication schedule is to use
nonblocking communication primitives. The nonblocking algorithm, which is a
communication algorithm using nonblocking communication primitives, avoids
excessive synchronization overhead, and is therefore faster than the blocking
algorithm, which is a communication algorithm using blocking communication
primitives. However, the main drawback of the nonblocking algorithm is its need for
as much buffering as the data being redistributed [6][11][12].

There is a significant amount of research on regular redistribution — redistribution
between CYCLIC(n) and CYCLIC(m). Message passing in regular redistribution
involves cyclic repetitions of a basic message passing pattern, while GENJ3LOCK
redistribution does not show such regularity. There is no repetition, and there is only
one message passing between two processors. There is presently no research
concerning GEN_BLOCK redistribution. This paper presents a scheduling algorithm
for GEN_BLOCK redistribution using blocking communication primitives and
compares it with nonblocking one.
The paper is organized as follows. In Section 2, the characteristics of blocking and
nonblocking message passing are presented. Some concepts about and definitions of
GEN_BLOCK redistribution are introduced in Section 3. In Section 4, we present an
optimal scheduling algorithm. In Section 5, a performance evaluation is conducted.
The conclusion is given in Section 6.

2. Communication Model

The interprocessor communication overhead is incurred when data is exchanged
between processors of a coarse-grained parallel computer. The communication
overheads can be represented using an analytical model of typical distributed memory
machines, the General purpose Distributed Memory (GDM) model [7], Similar
models are reported in the literature [2], [5], [6] and [11]. The GDM model represents

-754-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

the communication time of a message passing operation using two parameters: the
start-up time ts and the unit data transmission time /,„.

The start-up time is incurred once for each communication event. It is independent
of the message size to be communicated. This start-up time consists of the transfer
request and acknowledgement latencies, context switch latency, and latencies for
initializing the message header. The unit data transmission time for a message is
proportional to the message size. Thus, the total communication time for sending a
message of size m units from one processor to another is modeled as Expression 1. A
permutation of the data elements among the processors, in which each processor has
maximum m units of data for another processor, can be performed concurrently in the
Expression 1 time. The communication time of collective message passing delivered
in multiple communication steps is the sum of the communication time of each step as
shown in Expression 2.

TsTEP=t,+mXL W

"* TOTAL = 2-1 STEP (2)

Since the model does not allow node contention at the source and destination of
messages, a processor can receive a message from only one other processor in every
communication step. Similarly, a processor can send a message to only one other
processor in each communication step. Contention at switches within the
interconnection network is not considered. The interconnection network is modeled as
a completely connected graph. Hence, the model does not include parameters for
representing network topology. This assumption is realistic because of architectural
features such as virtual channels and cut-through routing in state-of-art
interconnection networks. Also, the component of the communication cost that is
topology dependent is insignificant compared to the large software overheads
included in message passing time.

3. GEN_BLOCK redistribution

This section illustrates the characteristics of GEN_BLOCK redistribution and
introduces several concepts. GEN_BLOCK. which allows each processor to have
different sizes of data blocks, is useful for load balancing [1]. Since, for dynamic load
balancing, current distribution may not be effective at the next time, the redistribution
between different GEN_BLOCKs like Fig. 1(a) is necessary.

The GEN_BLOCK redistribution causes collective message passing, as can be
seen in Fig. 1(b). Unlike regular redistribution, which has a cyclic message passing
pattern the message passing occurs in a local area. Suppose there are four processors:
Pi, Pl-1, PI, Pl+1. If Pi has messages for Pl-1 and Pl+1, there should be a message
from Pi to PI. In the same way, if there are messages from Pl-1 to Pi and from Pl+1 to
Pi, there should be a message from PI to Pi. For example, in Fig. 1(b), P2 sends
messages to P2, P3, and P4, and P7 receives messages from P5, P6, and P7. We call
this "Spatial Locality of Message Passing."

-755-

FEUP - Faculdade de Engenharia da Universidade do Porto

Same sender (or receiver) messages cannot be sent in a communication step. In this
paper, we call a set of those messages "Neighbor Message Set." One characteristic
of a neighbor message set is that there are, at most, two link messages. As shown in
Fig. 1(c), some messages can be included in two neighbor message sets; we call this
"Link Message." Another characteristic is that the chain of neighbor message sets is
not cyclical, which means that there is an order between them. We define "Schedule"
as a set of communication steps. In this paper, we assume that the communication
steps are ordered by their communication time. Fig. 1(d) is an example of the
schedule. The schedule completes redistribution with three communication steps.

There may be many schedules for a redistribution. Variations of a schedule are
easily generated by changing the communication steps of a message. For example, by
moving m7 to Step 1, we can make a new schedule. However, m^ is already in Step 1,
and since m« and m7 are in the same neighbor set, ir^ must be moved to a different
step. If m8 moves from Step 3 to Step 2, then m2, m^, and m5. as well as m7 and m8.
have to be relocated. We define these two message sets that cannot be located in the
same communication step as a "Conflict Tuple." For example, between Step 2 and
Step 3, there are two conflict tuples: ({m3, m7(,{m5,m8}) and ({mj4},{m15}). Fig. 1(e)
shows all conflict tuples of the schedule in Fig. 1(d).

PO P1 P2 P3 P4 P5 |F>6 |P7|

II llll llllllll llllllll Jim IMIIIGIHI

Target
* P1 PI P3 P4 I Ps JPBJPTJ

Mill II III IfllllflUUMMHM

PO P1 P2 P3 PA P5 P6 P7

(a) Source and Target Distribution Patterns (b) Messages and Spatial Locality

-*k
mj ™3

^-%
"\

-*T

"\ "k m.

Hr*—Nir -N«

m,: m„ m,5

-N

N, N2 N3 N, N5 N6 N7 N6 N9 N,D N„ Nl:

»rr+hr, SS15GD © GTCT
Step21 m2 | m4 1 fnT"

(see) pj Ö) t &r-
Step3 I m5 j m, |

(see) in 1—pj 1

(c) Msg. Ordering and Neighbor Msg. Sets (d) Schedule Table

m I S) LaaJ

Stepl - Step2 ({m,. m3}.{m2. m,}). ({^.{m,}), ({m9, m„. m13}.{m8. m,0. m,2. m„})

Step1-Step3 ({m^.fms}). ({^.{rtig}). Hm,3}.{m,5})

Step2-Step3 (K. m,}.!^, nV). ({m,„},{m,5})

(e) Conflict Tuples

Fig. 1. GEN_BLOCK redistribution

-756-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

4. Relocation Scheduling Algorithm

To save redistribution time, it is necessary to reduce the number and the size of
communication steps. In this section, we propose two optimal conditions and an
optimal scheduling algorithm for GEN_BLOCK redistribution.

4.1 Minimal Step Condition

According to Expressions 1 and 2, the influence of message suffling pattern or
non-maximum message sizes in a communication step are not crucial, but the
communication time linearly increases as the number of communication steps
increase. Therefore, reducing the number of communication steps is important. In this
section, we propose a minimal step condition for GEN_BLOCK redistribution.

• Minimal Step Condition: Minimum number of communication steps is maximum
cardinality of neighbor sets.

Since the messages in a neighbor message set cannot be sent in a communication
step, there should be more communication steps than the maximum cardinality of
neighbor message sets. According to the characteristics of neighbor message sets,
there are at most two link messages in a neighbor message set. All the link messages
can be located within two communication steps by using a zigzag locating mechanism
like mi, m2, m3 and nu, shown in Fig. 1(d). The remaining messages in neighbor sets
are then all independent and possible to locate in any communication step. Therefore,
the minimum number of communication steps is maximum cardinality of neighboring
sets.

4.2 Minimal Size Condition

As shown in Expression 1, reducing the sizes of maximum messages in each step is
important for efficient redistribution. In this section, we propose another optimal
scheduling condition for the GEN_BLOCK redistribution.

• Minimal Size Condition: For all conflict tuples (M, M') in Schedule C, SZM >
SZM:

The SZN is a size of N. Ncan be a message, a communication step, or a schedule. If
N is a message, SZN is the size of the message. If N is a communication step, SZN is
the size of maximum message in N. And if AT is the schedule, SZN is a sum of the size
of communication steps in N.

Suppose a communication schedule Cl has a conflict tuple that does not hold the
minimal size condition, which means that there is a conflict tuple (M, M') between
Communication Steps S, and S, (i > j) such that SZM < SZM-. Let's consider another
schedule, C2, that is the same as Cl except for the Message Set M and M'. In C2, M is

-757-

FEUP - Faculdade de Engenharia da Universidade do Porto

in Sj and M' is in S,-. To understand this easily, we express 5, and Sj in Cl as Slj and
Slj, and Sj and 5, in C2 as 52, and S2j. Because of the definitions of Communication
Step and Schedule, and Expressions 1 and 2, SZSn > SZM and SZSIJ 2SZM-. If SZSu >
SZM and SZSij = SZM-, then SZS2i > SZM-, therefore SZa = SZC;. In case SZSn > SZM and
SZsij > SZM-, if there is a message m in S2 such that SZm is less than 5ZW- but greater
than any other messages in S2, then SZC; = SZa -SZM- -SZm, otherwise SZC2 = SZa -
SZM- -SZM. In both cases, SZC: < SZa. Therefore, if there is a schedule Cl that does
not hold the minimal size condition, then we can always makes a schedule C2 that is
not worse than Cl by changing the communication steps of M and M'.

Unfortunately, this proof does not guarantee that all schedules that satisfy the
minimal size condition are optimal. However, according to the various experiments in
Section 5, we show that a schedule that satisfies the condition shows better
performance.

4.3 Relocation Scheduling Algorithm

Algorithm 1 is a scheduling algorithm that generates an optimal communication
schedule. The schedule satisfies minimal step condition and minimal size condition.

The algorithm consists of two phases. In the first phase, it performs size-oriented
list scheduling [15] (lines 6-12). In the processing of the first phase, when it cannot
allocate a message without violating the minimal step condition, it goes to the next

~™7^ f ^~^f *5~^ r+h
PI (2)

m3Y ma I irig"1

(6) (5)1 P)
m6

m7 m6

(i)

N, N2 N3 N4 N5 N6 N7

Steplf m,
(see) „,

m3 1©
m 1

^6
P)

Step2
(see)

[m, ©ffi 1 « i)—'

(a) Messages and Neighbor Msg. Sets (b) Before locating m5

N, N, N, N,
Stepl

(see)

Step2
(see)

N5 N6 N7

Stepl
(see)

Step2

(c) Reserve m4 for Stepl and Reallocate (d) Reserve mB for Step2 and Reallocate

N, N2 N3 N4 N5 N6 N, N, N2 N3 N, N5 N6 N7

isr^l i ^ [J>J SteplI m,
(see) (^

m3 1 !% 1 m7

Stepü 1 m, 1 m5 1 m7 |
(see) (Hi) ra 1—w—>

Step2
(see)

(f)

1 m.
1 rsi

mt)
(7)

(e) LS (size=14) RS (size= 15)

Fig. 2. Relocation Scheduling Algorithm

-758-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

phase — the relocation phase. In the relocation phase, it relocates already allocated
messages and makes space for the new message.

Some redistributions can be scheduled through only the list scheduling phase. In
this case, because a larger message is located in an earlier step, the minimal size
condition is satisfied. The schedule in Fig. 1(d) is generated through only the list
scheduling phase. The redistribution in Fig. 2(a) is an example that cannot be

Algorithm: locate

input M : Message Set sorted by size and reservation

rn : reserved neighbor set

output S : Schedule

{
1 Sort(M);

2 SNT(1, rn) = 1

3 for (i=0; kcard(M); i++) {

4 m = M(i);

5 for (j=0; j<card(S); j++) {

6 s = SG)
7 If ((SNT(s,nb(m,1))==0) && (SNT(s,nb(m,2))==0)) {

8 SNT(s,nb(m,1)) = 1;

9 SNT(s,nb(m,2)) = 1;

10 lnsert(m, s);

11 Go to next;

12 } }

13 LS = replace(S, locate(LM, nb(m,1)));

14 RS = replace(S, locate(RM, nb(m,2)));

15 if (sz(LS) < sz(RS)) S = LS;

16 elseS = RS;

17 next:

18 }

19 returnS;

}
sort(M) sorts the messages in M by size.

SNT(s.n) is flag to indicate "there is n-th neighbor set message in step s."

card(S) is a cardinality of set S.

nb(m,i) is i-th neighbor set of message m.

Insert(m,s) inserts message m into step s.

replace(S.S') returns a new schedule in which the position of m in S are

replaced as that in S'.

sz(S) is a redistribution size of schedule S.

Algorithm 1. Relocation Scheduling Algorithm

-759-

FEUP - Faculdade de Engenharia da Universidade do Porto

scheduled only through list scheduling. Because the maximum cardinality of its
neighbor sets is 2, the messages have to be scheduled within two communication
steps.

The input message set M of the relocation scheduling algorithm is {mi, nv m3, iru,,
m7, m5, m2, m8}. The algorithm schedules m,, m<„ m3, m*, and m7 with list scheduling,
but because there are already m^ in Step 1 and mt in Step 2, m5 cannot be located in
both Step 1 and Step 2. The control is then passed to the relocation phase. Because the
message m5 is included in neighbor set N4 and N5, it has to be placed in CD or ©■ In
the relocation process, the schedule is divided into two sub message sets. One, which
we term the left set, is composed of the messages before N4, and the other, termed the
right set, is composed of the messages after N5. The left set and the right set are kinds
of GEN_BLOCK redistributions and can be seen as an input of the relocation
scheduling algorithm, recursively. In case of the left set, to make a space in Step 2 for
m5, Hu is reserved in Step 1 before the recursive call. When the recursive call returns,
we get a new subschedule in Fig. 2(c), merge it with the original schedule, and make a
new schedule in Fig. 2(e). In case of the right set, we also make another schedule in
Fig. 2(f), but we discard it because it does not satisfy the minimal size condition.

5. Performance Evaluation and Experimental Results

This section shows timing results from implementations of our redistribution
algorithm on CRAY T3E and IBM SP2. The algorithms and node programs were
coded in Fortran 77, and MPI primitives were used for interprocessor communication.
We use a random function for a series of GEN_BLOCK distributions in the
experiment.

To evaluate the relocation scheduling algorithm in various redistribution
environments, we have assumed three changing load situations: stable, moderate, and
unstable. In the stable case, the changes are not heavy. Therefore, there are a small
number of messages, and the average size of the messages is also relatively small. To
make the series of distributions for this case, the standard deviation of block size is
limited to less than 10 % of average block size. As the situation becomes moderate
and unstable, the changing loads in each processor become heavy. Thus, for the
moderate and unstable situations, we assume that the standard deviation of block sizes
is between 45 % and 55 % and between 90 % and 100 % of average block size for
each.

In order to evaluate the effects of the minimal size condition and the minimal step
condition, we use the following five scheduling algorithms.
• NBLK is a schedule for a redistribution that uses non-blocking communication

primitives.
• OPT is an optimal schedule for blocking communication that satisfies the minimal

step condition and the minimal size condition. The schedule is generated by the
relocation scheduling algorithm.

• MIN_STEP is a minimal step schedule using blocking communication primitives.
For this schedule, we use a random list schedule, and to keep the minimal step
condition, we use the relocation phase of the relocation algorithm.

-760-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

MIN_SIZE is a minimal size schedule using blocking communication primitives.
For this schedule, we use the size-oriented list schedule.
RANDOM is a random schedule using blocking communication primitives. For
this schedule, we simply use a random list schedule. Therefore, it does not
guarantee both the minimal step condition and the minimal size condition.

DNBLK «OPT 0MIN_STEP EMIN_S!ZE QKANDOM

M

Stable Moderate Unstable

(a) Redistribution Time

Fig. 3. Redistribution Times at CRAY T3E

Stable Moderate unstable

(b) Redistribution Size

Stable Moderate Unstable

(c) Communication Step

DN3LK «OPT EWIN_STEP EMIN.SCE BRANDOM

_ 0 D25

li 0 020
e

K G 005 .

^-^3Essa

(a) (b)

Fig. 4. The effects of number of processor and array size at CRAY T3E

-761

FEUP - Faculdade de Engenharia da Universidade do Porto

5.1. Results from Cray T3E

Fig. 3 shows the difference between performances through the algorithms on Cray
T3E. Here, the performance of the NBLK, OPT, MIN_STEP, MIN_SIZE, and
RANDOM schedules are measured on 16 processors. The size of the array used is IM
floating points. From Fig. 3(a), as expected, the NBLK schedule shows the best
performance. Between the schedules using blocking primitives, it can be seen that the
OPT schedule takes the least amount of redistribution time, whereas the RANDOM
schedule takes the longest. The redistribution times for the MIN_SIZE schedule and
the MIN_STEP schedule vary.

Fig. 3(b) shows redistribution size of each algorithm. The redistribution size is the
sum of the maximum message sizes of each step. According to Fig. 3(b), as the
changing load situation becomes worse, the redistribution sizes increase. In the graph,
we can see that the gradients of the MIN_STEP schedule and the RANDOM
schedules are steeper than those of the OPT schedule and the MIN_SIZE schedule.
Because of the influence of the redistribution size, the graph in Fig. 3(a) shows that
the redistribution time of MINJSTEP schedule and the RANDOM schedule become
longer more quickly than those of the OPT schedule and the MIN_SIZE schedule.

An influence of the communication step is inferred from the gap between the
redistribution time of the OPT schedule and the MIN_SIZE schedule. According to
Expressions 1 and 2, there are two factors that determine the redistribution time: the
number of communication steps, and the redistribution size. As shown in Fig. 3(b),
the redistribution size of the two schedules is almost the same. Hence, the difference
in redistribution time is caused by the slight gap in the communication step.

The trends in Fig.3 are shown in experiments performed with different processor
numbers and different array sizes. In Fig. 4(a), the array size varies from 64K to 4M,
and in Fig. 4(b), the number of processors varies from 4 to 64. From these graphs, we
observed that, between redistribution schedules for blocking communication
primitives, the OPT schedule achieves better performance than the other schedules.
The results presented in this section show that for GEN_BLOCK redistribution, it is
essential to satisfy the minimal step condition and the minimal size condition.

5.2. Results from IBM SP2

There are slightly different results when the experiment is performed in IBM SP2.
In this section, we present and analyze the results from IBM SP2.

According to Fig. 5, OPT shows similar speed with MIN_SIZE, and MIN_STEP
schedule is even worse than RANDOM schedule. These mean that, in IBM SP2,
Minimal Step Condition is not helpful for redistribution, and sometimes it is harmful.

It is because IBM SP2 does not satisfy the assumed communication model, GDM.
As stated in section 2, the interconnection network in GDM is completely connected
graph, and contention at switch in interconnection is not considered. To examine IBM
SP2 and CRAY T3E satisfy GDM model, we perform an experiment in Fig. 6. The
experiment checks communication time of different shuffling situations, such as: one

-762-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

QNBLK BOPT 0MIN_STEP gMIN_SI7E QRANDOM j

0 045

0 040

0 035

, 0 030

0 025

0 020

0 015

0 010

0 005

0 000

111 It?
,j«r p:
II II

m

»012

«0 10

| 0 08

| 0 06

= 0 04

f 0.02

S 0 00

256K 1M

Array Size

Stable Mo aerate Unstable

Changes of Loads

(a)

Fig. 5. Redistribution Times in IBM SP2

directional message passing between two processors (ID), bi-directional two message
passings between two processors (2D), shift style three message passings between
four processors (SH) and cyclic shift style four message passings between four
processors, and in case 2D, we changed one message to be 1/4, 2/4, 3/4 and 4/4 of the
other. In this experiment, CRAY T3E shows relatively fixed performance, but IBM
SP2 takes various communication times according to the number of messages and
message size. SP2 takes more time in 2D, SH and C-SH than ID, and it also takes
more time as message size increases in the variation of 2D. These mean that
Expression 1 is no longer valid in SP2, and increasing the degree of parallelism is not
always good. This might be due to the architectural difference between the two
systems. The interconnection network of CRAY T3E is a 3D Torus and that of IBM
SP2 is a multistage interconnection network (MIN); it is generally known that the
probability of contention in MIN is higher than Mash or Torus structure such as
CRAYT3E[16][17].

These experiments demonstrate that the proposed scheduling algorithm shows
good performance when the communication model is close to GDM model.

6. Related Work

Many methods for performing array redistribution have been presented in the
literature.

Kalns et al. proposed a processor mapping technique to minimize the amount of
data exchange for BLOCK-to-CYCLIC(n) redistribution. Using the data to logical
processors mapping, they showed that the technique can achieve the maximum ratio
between data retained locally and the total amount of data exchanged [9].

-763-

FEUP - Faculdade de Engenharia da Universidade do Porto

0.014

0012

8 o.oio h

E
P 0.008 K
c
.o

I 0.006
1
I 0 004
o

0.002

0.000

0.12

0.1

0.08

0.06

0.04

0.02

ID 2D-1/4 2D-2/4 2D-3/A 20-4/4 SH OSH

(a)CRAYT3E

ID 2D-1/4 2D-2/4 2D-3/4 2D-4/4 SH OSH

(b) IBM SP2

Fig. 6. Communication Time of message sufflings in (a) CRAY T3E and (b) IBM SP2

Gupta et al. derived closed form expressions for determining the send/receive
processor/data sets for the BLOCK-to-CYCLIC redistribution. They also provided a
virtual processor approach to address the problem of reference index-sets
identification for array statements with CYCLIC(n) distribution and formulated active
processor sets as closed forms [10].

Thakur et al. proposed algorithms for runtime array redistribution algorithm for
BLOCK-to-CYCLIC(m) and CYCLIC(n)-to-CYCLIC(kn). Based on these
algorithms, they proposed a two phase redistribution method for CYCLIC(m)-to-
CYCLIC(n) using LCM or GCD of m and n [4]. In the same paper, Thakur et al.
proposed some ideas that are generally accepted in the later papers. One is a general
redistribution mechanism, LCM method, for redistribution between CYCLIC(m)-to-
CYCLIC(n). Another is the effect of indirect communication, which was expanded to
multiphase redistribution mechanism by Kaushik et al. [5]. The last is an evaluation of
the non-blocking communication, which Thakur et al. presented as more efficient than
blocking communication because the computation and communication are performed
in parallel. Following research has focused on the redistribution between CYCLIC(n)-
to-CYCLIC(kn) using non-block communication primitives.

Walker et al. posited that the performance of the redistribution algorithm using
block communication primitives was comparable to that of nonblocking redistribution
[6].

Lim at el. in [7] proposed a generalized circulant matrix formalism to reduce the
communication overheads for CYCLIC(n)-to-CYCLIC(kn) redistribution. Based on
the generalized circulant matrix formalism, they proposed direct, indirect, and hybrid
communication schedules. They demonstrated that an indirect communication
schedule using blocking primitives shows better performance than redistribution using
asynchronous communication primitives.

-764-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

7. Conclusion

In this paper, we propose a new scheduling algorithm for redistribution between
different GEN_BLOCKs.

In spite of excessive synchronization overhead, many programs use blocking
communication primitives because of the cost of communication buffers. However, to
avoid deadlock and poor performance, the messages using blocking communication
primitives have to be well scheduled. This paper analyzes the characteristics of
communication primitives in MPI and proves that a Minimal Step Condition and a
Minimal Size Condition are essential in blocking GEN_BLOCK redistribution.
Moreover, by adding a relocation phase to list scheduling, we make an optimal
scheduling algorithm: a relocation scheduling algorithm.

In section 5, various experiments on CRAY T3E and IBM SP2 were performed to
evaluate the proposed algorithm and analyze the influences of the optimal conditions
in a real environment. According to the experiments, it was proven that the relocation
scheduling algorithm shows better performance and that the optimal conditions are
critical in enhancing the communication speed of GEN_BLOCK redistribution in
GDM model.

References

1. High Performance Fortran Forum, High Performance Fortran Language Specification
version 2.0, Rice University, Houston, Texas, October 1996.

2. Yeh-Ching Chung, Ching-Hsien Hsu, and Sheng-Wen Bai, "A Basic-Cyclic Calculation
Technique for Efficient Dynamic Data Redistribution," IEEE Transaction on Parallel and
Distributed Systems, Vol.9, No.4, April 1998.

3. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, University
of Tennessee, Knoxville, Tennessee, May 1994.

4. Rajeev Thakur, Alok Choudhary, and Geoffrey Fox, "Runtime Array Redistribution in HPF
Programs," Proceedings ofSHPCC '94, pp.309-316, 1994.

5. S.D. Kaushik, C.-H. Huang, J. Ramanujam, and P. Sadayappan, "Multi-Phase Array
Redistribution: Modeling and Evaluation," Proceedings of 9th International Parallel
Processing Symposium, pp.441 -445, April 1995.

6. David W. Walker, Steve W. Otto, "Redistribution of Block-Cyclic Data Distribution Using
MPI," Concurrency: Practice and Experience, Vol.8 No.9, pp.707-728, November 1996.

7. Young Won Lim, Prashanth B. Bhat, and Viktor K. Prasanna, "Efficient Algorithm for
Block-Cyclic Redistribution of Arrays," IEEE Symposium on Parallel and Distributed
Process, October 1996 and will be published in Algorithmica.

8. James M. Stichnoth, David O'Hallaron, and Thomas R. Gross, "Generating Communication
for Array Statements: Design, Implementation, and Evaluation," Journal of Parallel
Distributed Computing, pp. 150-159, April 1994.

9. Edger T. Kalns and Lionel M. Ni, "Processor Mapping Techniques Toward Efficient Data
Redistribution," Proceedings of the 8th International Parallel Processing Symposium, April
1994, Cancun, Mexico

-765-

FEUP - Faculdade de Engenharia da Universidade do Porto

10.S.K..S Gupta, S.D. Kaushik, C.-H. Huang, and P. Sadayappan, "Compiling Array
Expressions for Efficient Execution on Distributed-Memory Machines," Technical Report
OSU-CISRC-4.

11.Frederic Desprez, Jack Dongarra, Antoine Petitet, Cyril Randriamaro, and Yves Robert,
"Scheduling Block-Cyclic Array Redistribution," IEEE Transactions on Parallel and
Distributed Systems, Vol.9, No.2, February, 1998 also presented in CRPC-TR97714-S,
February 1997.

12.Rajeev Thakur, Alok Choudhary, and J. Ramanujam, "Efficient Algorithms for Array
Redistribution," IEEE Transactions on Parallel and Distributed Systems, Vol.7 No.6, June
1996.

13.Minyi Guo, Ikauo Nakata, and Yoshiyuki Yamashita, "Contention-Free Communication
Scheduling for Array Redistribution," Proceedings of the International Conference on
Parallel and Distributed Systems, pp.658-667, December 1998.

14.High Performance Fortran Forum, HPF-2 Scope of Activities and Motivating Applications,
November 1994.

15.E. G. Coffman, Computer and Job-Shop Scheduling Theory, Jon Wiley & Sons, New York,
1976.

16.G. F. Pfister and V. A. Norton, "Hot spot contention and combining in multistage
interconnection networks," IEEE Transactions on Computers, vol. 34, pp. 943-948, Oct.
1985.

17Jose Duato, Sudhakar Yalamanchili, and Lionel Ni, Interconnection Networks, IEEE
Computer Society Press, pp. 155, 1997.

-766-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Finite/Discrete Element Analysis of
Multi-fracture and Multi-contact Phenomena

D.R.J. Owen, Y.T. Feng, J. Yu, and D. Peric

Department of Civil Engineering, University of Wales Swansea
Swansea, SA2 8PP, UK

{D.R.J.Owen, Y.Feng, J.Yu, D.Peric}Qswansea.ac.uk

Abstract. A dynamic domain decomposition strategy is proposed for
the effective parallel implementation of combined finite/discrete element
approaches for problems involving multi-fracture and multi-contact phe-
nomena. Attention is focused on the parallelised interaction detection
between discrete objects. Two graph representation models, are proposed
and a load imbalance detection and re-balancing scheme is also suggested.
Finally, numerical examples are provided to illustrate the parallel per-
formance achieved with the current implementation.

1 Introduction

The last several decades have witnessed the great success of the finite element
method, along with a tremendous increase of computer power, as a numerical
simulation approach for applications across almost every engineering discipline.
However, for situations involving discrete or discontinuous phenomena, a com-
bined finite/discrete element method naturally offers a more powerful solution
capability. Typical examples that can considerablely benefit from this combined
solution strategy include process simulation (e.g. shot peening, granular flow,
and particle dynamics) and fracture damage modelling (e.g. rock blasting, min-
ing applications, and projectile impact).

Besides their discrete/discontinuous nature, these applications are often char-
acterised by the following additional features: highly dynamic; rapidly changing
domain configurations; sufficient resolution required; and multi-physics phenom-
ena involved. In the numerical solution context, contact detection and interaction
computations often take more than half of the entire simulation time and the
small time step imposed in the explicit integration procedure also gives rise to
the requirement of a very large number (e.g. millions) of time increments to be
performed. For problems exhibiting multi-fracturing phenomena, the necessity
of frequent introduction of new physical cracks and/or adaptive re-meshing at
both local and global levels adds another dimension of complexity. All these fac-
tors make the simulation of a realistic application to be extremely computational
intensive.

Consequently, parallelisation becomes an obvious option for significantly in-
creasing existing computational capability, along with the recently remarkable

-767-

FEUP - Faculdade de Engenharia da Universidade do Porto

advances in hardware performance. In recent years considerable effort has been
devoted to the effective parallel implementation of conventional finite element
procedures, mainly based on a static domain decomposition concept. The fea-
tures itemised above associated with the applications of interest make such a
parallelisation much more difficult and challenging. Only very recently, have
some successful attempts emerged at tackling problems of a similar nature[l-3].

It is evident that a dynamic domain decomposition (DDD) strategy plays
an essential role in the success of any effective parallel implementation for the
current problem. The ultimate goal of this work is therefore to discuss the ma-
jor algorithmic aspects of dynamic domain decomposition that make significant
contributions to enhancing the parallel performance. Our implementation is also
intended to be general for both shared and distributed memory parallel plat-
forms.

The outline of the current work is as follows: In the next section, a general
solution procedure of the combined finite/discrete element approach for prob-
lems involving material discontinuity and failure is reviewed and a more detailed
description is devoted to the multi-fracture modelling and the interaction detec-
tion; Section 3 presents dynamic domain decomposition parallel strategies for
the combined finite/discrete element approach and parallel implementation for
both the finite element computation and the global search is also investigated.
Issues relevant to the dynamic domain decomposition algorithm for the con-
tact interaction computation, mainly the two graph representation models for
discrete objects, is proposed in the next section. Section 5 is devoted to the
description of a load imbalance detection and re-balancing scheme. Finally, nu-
merical examples are provided to illustrate the parallel performance achieved
with the current implementation.

2 Solution Procedures of Combined Finite/Discrete
Element Approaches

Engineering applications involving material separation and progressive failure
can be found, among others, in masonry or concrete structural failure, demo-
lition, rock blasting in open and underground mining and fracture of ceramic
or glass-like materials under high velocity impact. The numerical simulation of
such applications, especially in large scale, has proved to be very challenging.
The problems are usually represented by a small number of discrete bodies prior
to the deformation process. In the combined finite/discrete element context, the
deformation of each individual body is modelled by the finite element discreti-
sation and the inter-body interaction is simulated by the contact. During the
simulation process, the bodies are damaged, by, for example, tensile failure, and
modelling of the resultant fragmentation may result in possibly two or three
orders of magnitude more bodies by the end of the simulation. In addition, the
substantial deformation of the bodies may necessitate frequent adaptive remesh-
ing of the finite element discretisation. Therefore the configuration and number

■768-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

of elements of the finite element mesh and the number of bodies are continuously
changing throughout the simulation.

Similarly, process engineering applications often contain a large number of
discrete bodies. In many cases, these bodies can be treated as rigid and repre-
sented by discrete elements as simple geometric entities such as disks, spheres
or ellipses. Discrete elements are based on the concept that individual material
elements are considered to be separate and are (possibly) connected only along
their boundaries by appropriate physically based interaction laws. The response
of discrete elements depends on the interaction forces which can be short-ranged,
such as mechanical contact, and/or medium-ranged, such as attraction forces in
liquid bridges.

Contact cases considered in the present work include node to edge/facet and
edge/facet to edge/facet. Short-range mechanical contact also include disk/sphere
to disk/sphere and disk/sphere to edge/facet. Medium-range interactions can be
represented by appropriate attractive relations between disk/sphere and disk/sphere
entities.

The governing dynamic equations of the system are solved by explicit time
integration schemes, notably the central difference algorithm.

2.1 Procedure description

In the context of the explicit integration scheme, a combined finite and discrete
element approach typically performs the following computations at each time
step:

1. Finite element and fracture handling:
- Computation of internal forces of the mesh;
- Evaluation of material failure criterion;
- Creation of new cracks if any;
- Global adaptive re-meshing if necessary;

2. Contact/interaction detection;
- Spatial search: detection of potential contact/interaction pairs among

discrete objects;
- Interaction resolution: determination of actual interaction pairs through

local resolution of the kinematic relationship between (potential) inter-
action pairs;

- Interaction forces: computation of interaction forces between actual in-
teraction pairs by using appropriate interaction laws.

3. Global solution: computation of velocities and displacements for all nodes;
4. Configuration update: update of coordinates of all finite element nodes and

positions of all discrete objects;

The procedures of finite element internal force computation, equation solu-
tion and configuration update in the above approach are all standard operations,
and therefore further description is not necessary. However, the fracture mod-
elling and the interaction detection warrant further discussion.

-769-

FEUP - Faculdade de Engenharia da Universidade do Porto

2.2 Multi-fracturing modeling

Two key issues need to be addressed for successful modelling of material failure:
(i) the development of constitutive models which reflect the failure mechanism;
(ii) the ability of numerical approaches to handle the discontinuities such as shear
bands and cracks generated during the material failure and fracture process.

Failure models A variety of constitutive models for material failure have ap-
peared over the years, with softening plasticity and damage theory being the two
most commonly adopted in the nonlinear finite element analysis of failure. For
brittle materials, a simple Rankine failure model can be employed. After initial
yield, a rotating crack formulation may be employed in which the anisotropic
damage is modelled by degrading the elastic modulus in the direction of the
current principal stress invariant.

For all fracture or localisation models regularisation techniques must be intro-
duced to render the mesh discretisation objective. Optional formulations include
non-local damage models, Cosserat continuum approaches, gradient constitutive
models, viscous regularisation and fracture energy releasing/strain softening ap-
proaches. All models effectively result in the introduction of a length scale and
have specific advantages depending on the model of fracture and loading rate.

More detailed description of various fracture models can be found in [4].

Topological update scheme The critical issue of fracture modelling is how
to convert the continuous finite element mesh to one with discontinuous cracks
and to deal with the subsequent interactions between the crack surfaces. The
most general approaches permit fracture in an arbitrary direction within an
element and rely on local adaptive re-meshing to generate a well-shaped element
distribution.

A particular fracture algorithm is developed in this work to model the failure
of brittle materials subject to impact and ballistic loading. The fracture algo-
rithm inserts physical fractures or cracks into a finite element mesh such that
the initial continuum is gradually degraded into discrete bodies. However, the
primary motivation for utilising the algorithm is to correctly model post-failure
interaction of fractures and the motion of the smaller particles created during
the failure process.

Within this algorithm, a nodal fracture scheme is employed to transfer the
virtual smeared crack into a physical crack in a finite element mesh. The scheme
is a three stage procedure: (i) Creation of a failure map for the whole domain;
(ii) Assessment of the failure map to identify where fractures should be inserted;
(iii) Updating of the mesh, topology and associated data.

In 2-D cases, the failure direction is defined to coincide with the maximum
failure strain direction and the crack will propagate orthogonal to the failure
direction. Associated with the failure direction, a failure plane is defined with
the failure direction as its normal and the failed nodal point lying on the plane.
A crack is then inserted through the failure plane. If a crack is inserted exactly

•770-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

through the failure plane, some ill-shaped elements may be generated. Local re-
meshing is then needed to eliminate them. Alternatively, the crack is allowed
to propagate through the element boundary. In this way, no new elements are
created and the updating procedure is simplified. However, this procedure neces-
sitates a very fine mesh discretisation around the potential fracture area. Within
the current algorithm a minimum element area criterion is used to ensure that
excessively small sliver elements are not created. If the element area obtained
by splitting the elements is below this threshold value then the fracture is forced
to be along element boundaries. For 3-D situations, the corresponding fracture
algorithm is basically the same but the implementation procedure is more com-
plicated.

In addition, an element erosion procedure is also applied to deal with the
situation that the material represented by the element to be eroded no longer
contributes to the physical response for the problem, such as the case where the
material is melted down or evaporated at high temperature or is transformed
into very small particles.

2.3 Interaction detection

The interaction contact detection comprises three phases: (global) spatial search,
(local) interaction resolution and interaction force computation.

The spatial search algorithm employed is a combination of the standard
space-cell sub-division scheme with a particular tree storage structure, the Ar-
gumented Digital Tree (ADT) [5], and can accommodate various geometrical
entities including points, facets, disks/spheres and ellipses. Each entity is repre-
sented with a bounding box extended with a buffer zone. The size of the buffer
zone is a user-specified parameter. In the case of medium-range interaction,
it must not be smaller than the influence distance of each object considered.
The algorithm eventually locates for each object (termed the contactor) a list
of neighbouring objects (termed potential targets) that may potentially interact
with the contactor.

In the second phase, each potential contactor-target pair is locally resolved
on the basis of their kinematic relationship, and any pair for which interaction
does not occur, including medium range interaction if applied, is excluded. In
the final phase, the interaction forces between each actual interaction pair are
determined according to a constitutive relationship or interaction law.

Effects of buffer zone sizes The global spatial search may not necessarily
be performed at every time step, as will be described below, while the interac-
tion resolution and interaction force computations should be conducted at each
time step. Furthermore, some kinematic variables computed in the interaction
resolution phase will be used in the force computation. For these reasons, the
interaction resolution and force computations are actually performed together
in the current implementation.

The computational cost involved in the interaction force computation phase
is fixed at. each time step, if no new surfaces are created during the fracturing

■771

FEUP - Faculdade de Engenharia da Universidade do Porto

process. It may, however, vary significantly for the other two phases if different
sizes of buffer zone are specified.

Basically, the size of buffer zone has conflicting effects on the overall costs of
the global search and the local interaction resolution. First of all, after perform-
ing a global search at one time step, a new search is required to be performed
only if the following condition is satisfied

'■max -> ''buff (1)

where huff is the size of the buffer zone; and lmax is the maximum accumulated
displacement of a single object for all discrete bodies in any axial direction after
the previous search step:

lmax = max (]T v\ Atk) z e [1, nbody], j <E [1, ndim] (2)

in which v\ is the velocity of object i in the j direction; Atk the length of time
step at the k-th increment after the global search; nbody the total number of
objects and n<f,m the number of space dimensions.

Given a larger buffer zone, the spatial search will create a longer list of
potential targets for each contactor, which will increase the amount of work
in the phase of interaction resolution in order to filter out those pairs not in
potential interaction. On the other hand, the global search will be performed
with less frequency which leads to a reduced overall cost in the spatial search
phase. With a smaller buffer zone, the potential target list is shorter and the
local interaction resolution becomes less expensive at each step, but the global
search should be conducted more frequently thus increasing the computational
cost in searching.

A carefully selected buffer zone can balance the cost in the two phases to
achieve a better overall cost in interaction detection. Nevertheless, an optimal
buffer zone size is normally difficult to select for each particular application.

Incremental global search Generally speaking, the spatial search is an ex-
pensive task that often consumes a substantial portion of the total simulation
time if each new search is performed independently from the previous search.
The cost could however be reduced to some extent if the subsequent searches
after the initial one are conducted in an incremental manner. In this incremen-
tal approach, the tree structure (ADT) required in the current search can be
obtained as a modification of the previous structure and some search operations
can also be avoided.

This approach is based on the observations that even though the configura-
tion may undergo significant changes during the whole course of the simulation,
the actual change between two consecutive search steps is bounded by the buffer
zone and therefore is local. In addition, the space bisection tree is characterised
by the fact that each node in the tree represents a subspace of the whole sim-
ulation domain. As long as each node (i.e. object) itself stays in the subspace

■772-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

it is associated with, the whole tree will not need to be modified at all. Conse-
quently, in the new search, it is possible to avoid building an entirely new tree
by modifying only the subtrees that are affected by those objects which have
moved out of their represented subspace.

The detail of the above (incremental) global search algorithm can be found
in [5]. A more detailed description for interaction detection can be found in [4],
while the interaction laws applied to particle dynamics, and shot peening in
particular have been discussed in [6,7].

3 Parallel Implementation Strategies

Domain decomposition based parallelisation has been established as one of the
most efficient high level (coarse grain) approaches for scientific and engineering
computations, and also offers a generic solution for both shared and distributed
parallel computers.

A highly efficient parallel implementation requires two, often competing, ob-
jectives to be achieved: a well balanced workload among the processors, and a
low level of interprocessor communication overhead.

For conventional finite element computations with infrequent adaptive remesh-
ing and without contact phenomena, a static domain decomposition is generally
an ideal solution that initially distributes the sub-domain data to each processor
and redistributes them after each adaptive remeshing. A well load-balanced situ-
ation can be achieved if each processor is assigned an equal number of elements.
Interprocessor communications can be reduced to a low level if the interface
nodes that are shared by more than one sub-domain are small.

For the current situation involving both finite and discrete elements, to ap-
ply a single static domain decomposition for both finite and discrete element
domains will apparently not achieve a good parallel performance due to the
highly dynamic evolution of the configuration concerned. Therefore a dynamic
domain decomposition strategy should be adopted.

3.1 Dynamic domain decomposition

The primary goal of the dynamic domain decomposition is to dynamically assign
a number of discrete elements or objects to each processor to ensure good load
balance as the configuration evolves.

Besides the same two objectives as for a static domain decomposition, the
dynamic domain decomposition should also achieve an additional two objectives:
minimum data movement and efficiency.

Firstly, completely independent domain decompositions between the consec-
utive steps normally give rise to very large amount of data movement involved
among the processors, leading to a substantial communication overhead. There-
fore, the dynamic domain decomposition should provide efficient re-partitioning
algorithms that can keep the domain partitioning constant as much as possible
during the simulation. Secondly, since the partitioning may need to be performed

■773-

FEUP - Faculdade de Engenharia da Universidade do Porto

many thousands of times during simulations, the dynamic domain decomposition
must be very efficient.

Most dynamic domain decomposers can be classified into two general cat-
egories: geometric and topological. Geometric partitioners divide the computa-
tional domain by exploiting the location of the objects in the simulation, while
topological decomposers deal with the connectivities of interactions instead of
geometric positions. Both methods can be applied to both finite element and
discrete element simulations. Generally, topological methods can produce bet-
ter partitions than geometric methods, but are more expensive. A particular
topological based decomposer called (Par)METIS [8] is chosen as the domain
partitioner in our implementation as it appears to meet the above criterion for
an effective domain decomposition algorithm.

When applying the dynamic domain decomposition strategy to the current
finite/discrete element simulation, there are two different approaches. The first
approach dynamically decomposes both finite and discrete element domains.
Different characteristics of the two parts makes it very difficult to achieve a
good load balance.

An alternative solution, which is employed in this work, is to decompose the
computations associated with the two domains separately. Within the interac-
tion detection of the discrete elements, slightly modified schemes are employed
for the global search, and the combined interaction resolution and force compu-
tations. This strategy provides maximum flexibility in the implementation and
thus allows the most suitable methodologies and data structures to be applied
in different stages of the simulation. This may however cause extra commu-
nications in information exchange among processes due to the data structure
inconsistencies between different solution stages at each time step.

Dynamic decomposition of finite element computations and a particular par-
allel implementation version of the global search are discussed below, while the
parallel issues for the combined interaction resolution and force computation,
including dynamic domain partitioning and dynamic load re-balancing, will be
addressed respectively in the next two sections.

3.2 Dynamic decomposition of finite element computations

Compared to the discrete element domain, the configuration change of the finite
element mesh is relatively less frequent and insignificant. The major concern for
a dynamic domain decomposition algorithm is its ability to adaptively partition
the domain so as to minimize the cost due to the data migration among different
processors after a new partitioning.

To achieve a well-balanced workload situation often needs a fine tuning. In
the case that different elements have different orders (e.g. linear or quadratic),
and/or different material models, and/or different stress states (e.g. elastic or
plastic), thus having different computational effort, each element should be
weighted proportional to its actual cost to ensure a good load balance. In het-
erogeneous computer clusters, an uneven workload decomposition should be ac-

■774-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Box 1: Parallel Implementation of Initial Global Search

1. Globally distribute objects among processors using any available means of
domain decomposition;

2. Each processor defines the bounding box of each object with an extended
buffer zone in its subdomain;

3. Each processor computes the global bounding box of its domain and broad-
casts this information to other processors;

4. Each processor applies the sequential global search algorithm to its domain
and constructs its own ADT and potential target lists;

5. Each processor identifies in its domain the objects that overlap with the
global bounding boxes of the other domains and then sends the objects to
the processors owning the overlapping domains;

6. Each processor receives from other processors the objects that overlap
with its own global bounding box; conducts the search for each object in
its ADT to build the potential target list, if any; and sends the result back
to the processor to which the object originally belongs;

7. Each processor collects the lists created in other processors and merges
them to the original lists to obtain the final lists.

complished to take into account different computing powers that each member
machine of the group can offer.

3.3 Dynamic parallelisation of global search

Global search is found to be the most difficult operation to be parallelised effi-
ciently due to its global, irregular and dynamic characteristics. In our parallel
implementation, some domain decomposition strategies are also employed to
both initial and subsequent incremental search steps. Box 1 outlines the algo-
rithmic steps involved in the initial global search.

As the initial search is conducted only once, the performance of the algorithm
is not a major concern. Therefore, it can employ any available means to distribute
the objects among the processors. In some cases, the algorithm can even be
performed sequentially.

For the subsequent incremental searches, an effective parallel implementation
of the algorithm becomes critical. Box 2 presents the corresponding parallel
algorithm [9] and only the differences from the previous initial search approach
are listed.

In the algorithm, it is essential to assume that a good dynamic object dis-
tribution is performed in order to achieve a good load balance, and one such
distribution scheme will be proposed in the next section.

•775-

FEUP - Faaildade de Engenharia da Universidade do Porto

Box 2: Parallel Implementation of Incremental Global Search

1. Each processor migrates those objects that are assigned to different do-
mains in the current partition to their new processors;

2. Each processor defines/modifies the bounding box of each object with an
extended buffer zone in its subdomain;

3. Each processor updates the global bounding box of its domain and broad-
casts this information to other processors;

4. Each processor modifies its own ADT and constructs its potential target
lists;

5-7. Same as the Implementation in Box 1.

4 Dynamic Domain Decomposition for Interaction
Computations

Many scientific and engineering applications can be abstractly expressed as
weighted graphs. The vertices in the graph represent computational tasks and the
edges represent data exchange. Depending on the amount of computation per-
formed by each task, the vertices are assigned a proportional weight. Similarly,
the edges are assigned weights that reflect the data needed to be exchanged.

A domain partitioning algorithm aims to assign each processor a subset of
vertices whose total weight is as the same as possible so as to balance the work
among the processors. At the same time, the algorithm minimise the edge-cut
(subject to load-balance requirements) to minimise the communication overhead.

As the simulation evolves, the computational work associated with an object
can vary, so the objects may need to be redistributed among the processors to
balance the workload. The objective of dynamic re-partitioning is therefore to
compute a balanced partitioning more effectively that minimises the edge-cut,
and to minimise the amount of data movement required in the new partitioning.

4.1 A priori graph representation of discrete objects

The first important step for the development of an efficient dynamic partition-
ing for the interaction computation lies in an appropriate graph representation
of discrete elements. Unlike a finite element mesh, discrete objects do not have
underlying connectivity to explicitly associate with, and thus some form of con-
nections among the objects should be established. An obvious choice is to use
the potential target list of each contactor as its connectivity, upon which a graph
representation of the interaction computation can therefore be established.

Each vertex is initially assigned a weight that is equal to the number of the
targets in its potential list and no weight is placed on the edges. This weighting
scheme will work reasonably well if the simulation is dominated by one type

-776-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

of interaction and the objects have nearly even distribution across the whole
domain.

As the above graph model is established based on a priori estimation of
the interaction relationship and the cost of interaction force computation, it is
therefore termed as the a priori model.

This special choice of connectivity has the following implications: First, as
the potential target list will not be changed in two consecutive global searches,
the graph partitioning may need to be performed only once after each global
search rather than at each time step. Second, depending on the size of buffer
zones specified, the list is only an approximation to the actual interaction rela-
tionship between the contactor and target. Furthermore, the actual relationship
between objects is also undergoing dynamic changes at each time step. These
considerations indicate that the resulting graph may not be a perfect represen-
tation of the problem under consideration. Consequently some degree of load
imbalance may be expected.

4.2 A posteriori graph representation

In order to improve the accuracy of the above graph model, the following inherent
features in the current solution procedure for the interaction resolution and force
computation should be addressed:

- The target lists created by the global search provide only a potential interac-
tion relationship between contactors and targets, and this relation can only
be established after the local resolution, and therefore can not be accurately
established a priori;

- The computation costs associated with each object, including the kinematic
resolution and interaction force computation, are also unknown a priori, and
are also very difficult to be measured precisely;

- Both the interaction relationship and the computational cost for each object
are undergoing constant changes at each time step.

By specifying a very small buffer zone, the potential interaction lists can
be much closer to the actual interaction relationship, but this will significantly
increase the costs of simulation as indicated earlier, and therefore is not a suitable
option.

In view of these facts, an alternative graph representation model is suggested.
The basic idea is to use the actual information obtained in the previous time
step as the base for modelling the situation at the current step. More specifically,
a (nearly) accurate graph model is built for the previous time step. The graph
is based on the actual contactor-target list as the connectivity and the (nearly)
actual computational cost for each contactor as the vertex weighting. Since the
computation domain will not undergo a significant change in two consecutive
time steps as a result of a small time increment, it is reasonable to assume that
this graph model is also a good representation to the problem at the current time
step. Due to the a posteriori nature, this model is thus termed the a posteriori
graph representation.

-Ill -

FEUP - Faculdade de Engenharia da Universidade do Porto

Another advantage of this a posteriori model is that the global search and
the domain partitioning can now be performed at different time instances and
intervals. This means that the global search is performed when the potential
interaction list will be no longer valid; while a dynamic graph partitioning can
be conducted when load balancing is required to be maintained. The latter aspect
will be further expanded upon in the next section.

4.3 Integration with global search

In principle, both global search and graph partitioning can have totally inde-
pendent data structures, mainly with different object distribution patterns. In
distributed memory platforms, if the same object is assigned to different do-
mains/processors in the search and partitioning phases, some data movement
between two processors becomes inevitable. The extra communication results
from the data structure inconsistency between the two phases. If the two data
structures can be integrated to a certain degree, the communication overhead
can also be reduced.

In the parallel implementation, the data associated with a particular object,
such as coordinates, velocities, material properties, forces and history-dependent
variables, is more likely to reside on the processor determined by the graph
partitioning. Therefore, it is a good option for the global search to use the same
object distribution pattern as generated in the graph partitioning phase, i.e. a
single dynamic domain decomposition is applied to all computation phases in
the interaction detection step.

Another advantage of this strategy is that a good load balance may also be
achieved in the global search. This can be justified by the fact that a similar total
number of potential interaction lists among the processors also implies a similar
number of search operations. In addition, the incremental nature of the dynamic
repartitioning employed ensures that only a small number of objects is migrated
from one domain to another, and hence only a limited amount of information is
required to be exchanged among the processors when re-constructing the ADT
subtrees and potential target lists in the incremental global search.

5 Dynamic Load Re-Balancing

The domain partitioning algorithm is supposed to generate a well load-balanced
partitioning. For various reasons, this goal may, however, be far from easy to
achieve, especially when dynamic domain decomposition is involved. It is essen-
tial, therefore, to have a mechanism in the implementation that can detect the
problem of load imbalance when it occurs and take proper actions to restore,
or partially restore, the balance if necessary. As a matter of fact, dynamic load
re-balancing is an integrated part of the dynamic domain decomposition which
determines the time instances at which a dynamic re-partition should be per-
formed. In this section, a dynamic load balancing scheme will be proposed in
an attempt to enhance the performance of the parallelised interaction resolution
and force computations.

■778-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

5.1 Sources of load imbalance

Load imbalance may be caused by the following factors:

- A perfect partition may not be able to achieve a perfect CPU time balance
due to sophisticated hardware and software issues;

— The partition produced by the domain decomposer is not perfectly balanced
in terms of workload;

— In the finite element computation phases, imbalanced workload may arise
when mechanical properties of some elements change, for instance, from elas-
tic to plastic; or when local re-meshing happens that leads to some extra or
fewer number of elements for certain domains;

- In the interaction resolution and force computation phases, workload unbal-
ancing may happen for two reasons: The connectivity for each object used
in the graph is only an approximation to the real interaction relationship as
addressed earlier; and/or the assigned weighting for each object/edge may
not represent the real cost associated with the object/edge;

The first two sources of load imbalance are beyond the scope of the present
work and thus will not be given further consideration.

An important part of the load rebalancing scheme is to obtain a fairly accu-
rate measurement of the actual cost for each object. This is however not easy to
fulfill. The difficulty is due to the fact that the relative difference in computation
costs between different types of interaction, such as sphere to sphere and sphere
to facet, and sphere to sphere and node to facet, are difficult to define accurately.

A possible solution to this difficulty is by means of numerical experiment. We
can design a series of experiments on one particular system to establish a relative
cost of each element operation, including each type of interaction resolution and
force computation. This relative cost, however, should be updated accordingly
if the program is to be run on a new system.

With the relative cost model, we can compute the number of different com-
putation operations an element/object participates in at each time step and then
calculate its actual cost upon which the assignment of a proportional weighting
to the element/object in the graph is based. This provides a. basis on which
further operations aimed at maintaining load balancing can take place.

5.2 Imbalance detection and re-balancing

Most load re-balancing schemes consist of three steps: imbalance detection, re-
balancing criterion and domain re-decomposition.

The first step of load re-balancing schemes is to constantly monitor the level
of load imbalance among the processors during the simulation. The workload of
one processor at each time step can be measured, for instance, by summing up
the relative costs of all objects in the processor. These costs are already computed
during the interaction computation by following the procedure outlined earlier.
Alternatively, the workload can also be accurately obtained by measuring its

■779-

FEUP - Faculdade de Engenharia da Universidade do Porto

actual runtime, but this is not trivial. Using either approach, the level of load
imbalance can be defined as

B=W™ZTW (3)

where
np

Wmax = max Wi, W = (y^wA jnv

i=\

and Wi is the workload of the i-th processor; and np is the number of processors.
The next step is to decide when to perform a new graph partitioning to re-

balance the load. Such a decision requires consideration of complicated tradeoffs
between the cost of the graph partitioning, the quality of the new partitioning
and the redistribution cost. A simple approach is to start the re-partitioning
when the level of imbalance, B, exceeds a prescribed value, r, i.e.

B > T (4)

Similar to the size of buffer zone, r may also need to be carefully tuned in order
to achieve a better overall performance.

The final step is to perform a domain re-partitioning as described in the
previous sections when condition (4) is satisfied.

6 Numerical Experiments

In this section, three examples are provided to illustrate the performance of
the algorithms and implementation suggested. As the parallel performance of a
domain decomposition for conventional finite elements is well established, the
experiments will focus on the interaction resolution and force computations in
both 2D and 3D cases.

In addition, in view of the fact that the efficiency of a parallelised program
is often affected to some extent by complex hardware and software issues, the
contribution to the overall performance from only the algorithmic perspective is
therefore identified. More specifically, the following issues will be investigated:
1) the cost of the dynamic domain partitioning and repartitioning in terms of
CPU time, and the quality of the partitioning; 2) the behaviour of two proposed
graph representation models in terms of load balancing.

The parallelised finite/discrete element analysis program is tested on an SGI
Origin 2000 with 8 processors. Due to the shared memory feature of the ma-
chine, interprocessor communication overhead plays a much less active role in
the parallel performance. Each example is respectively tested with 1, 2, 4 and 6
processors.

The type of interaction considered between discrete elements is standard
mechanic contact and the contact cases include node to edge, disk to disk and
disk to edge contact in 2D, and sphere to sphere and sphere to 3-noded facet
contact in 3D.

780-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 1. Example 1 - Dragline bucket filling: Initial configuration

6.1 Example 1: 2D Dragline bucket filling

This example simulates a three-stage dragline bucket filling process, where the
rock is modelled by discrete elements as disks, while the bucket is modelled
as rigid, and the filling is simulated by dragging the bucket with a prescribed
motion.

Figs. 1 and 2 respectively illustrate the initial configuration of the problem
and two subsequent stages of the simulation. The discrete element model contains
over 5000 disks with a radius of 20 units. The size of buffer zone is chosen to
be 1 unit, and the time step is set to be 2.6 x 10~6 sec that leads to a total
number of 1.6 million time increments required to complete the simulation. With
the current buffer zone size, the global (re-)search is performed at about every
30 ~ 50 steps and takes about 12.9% of the total CPU time in the sequential
case.

For the dynamic domain partitioner employed, the CPU time consumed is
0.7% of the total time in the sequential case and 1.2% with 6 processors. These
indicate that the re-partitioning algorithm in ParMETIS is efficient. It is also
found that the partitioner produces partitioning with up to 3.5% load imbalance
in terms of the weighted sub-total during the simulation.

Fig. 3 demonstrates the necessarity of employing a dynamic re-partitioning
scheme, in which, the sub-domain distributions obtained by the re-partitioning at
two stages are compared with those produced by a completely new partitioning at
each occasion. It confirms that a series of consistent partitions that minimise the
redistribution cost will not be achieved unless a proper re-partitioning algorithm
is adopted in the dynamic domain decomposition. Note that, for better viewing,
a much larger disk radius is used in Fig. 3.

The CPU time of each processor for the contact resolution and force com-
putations using the a priori graph model at the first 500k time increments is
shown in Fig. 4a with various number of processors, where it is clearly illus-
trated that severe load imbalance occurs. This can be explained, for instance in
the 2-processor case, by the fact that although the domain is well partitioned

■781 -

FEUP - Faculdade de Engenharia da Universidade do Porto

(b)

Fig. 2. Example 1 - Dragline bucket filling: Configurations at two stages showing par-
ticle velocities: (a) t=2s; (b) t=3.3s

782-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 3. Example 1 - Dragline bucket filling: Domain partitions at two different time
instants: complete partitioning (left column) and re-partitioning (right column)

(a) (b)

Fig. 4. Example 1 - Dragline bucket filling: CPU time of each processor: (a) the a
priori model; (b) the a posteriori model

783-

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 1. Speedup obtained by two graph models for Example 1

Model 2 processors 4 processors 6 processors
a priori model

a posteriori model
1.63
1.86

3.20
3.55

4.41
5.01

according to the potential contact lists, the actual computation cost on the sec-
ond sub-domain is much less because the disks in this region are more scattered
i.e. more false contact pairs are included in the corresponding lists.

A much better load balancing situation, depicted in Fig. 4b, has been achieved
by the a posteriori graph model together with the proposed load re-balancing
scheme. Table 1 also presents the overall speedup obtained by these two models
with different number of processors.

6.2 Example 2: 3D hopper filling

The second example performs simulations of a 3D ore hopper filling process. The
ore particles are represented by discrete elements as spheres and the hopper and
the wall are assumed to be rigid. The particles are initially regularly packed at
the top of the hopper and then are allowed to fall under the action of gravity.
The configuration of the problem at an intermediate stage of the simulation is
illustrated in Fig. 5.

Fig. 5. Example 2 - 3D Hopper filling: Configuration at t=0.75s

■784-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 2. Speedup obtained by two graph models for Example 2

Model 2 processors 4 processors 6 processors
a priori model

a posteriori model
1.86
1.88

3.55
3.65

4.72
5.23

The radius of the spheres is 0.25 units and the buffer zone is set to be 0.0075
units. The global search is conducted less frequently at the beginning and end
of the simulation due to a relatively small velocity of motion.

A similar quality of the partitioning as in the previous example is observed
in this example. Table 2 shows the speedup achieved by both graph models
with various number of processors. It appears that the a priori graph model
exhibits a similar performance as the a posteriori model for the cases of 2 and
4 processors, but shows a performance degradation in the 6-processor case. The
reason for this is because of the symmetry in both x- and y-directions in the
problem, the domain decomposer produces a well balanced partitioning, in terms
of actual computation cost, in the 2 and 4 processor cases, but fails to achieve
the same quality of partitioning in the case of 6 processors. Also note that since
the computational cost associated with each contact pair in 3D is more expensive
than that in 2D, a slightly better overall parallel performance is achieved in this
example.

6.3 Example 3: Axisymmetric layered ceramic target impact

This example consists of a tungsten long rod impacting a composite target com-
prising an RHA backing block, three ceramic tiles of approximate thickness
25mm, with 6mm RHA cover plate. The ceramic tiles are unconfined. The com-
putational model is axisymmetric with the tile radius set as 74mm. Four noded
quadrilateral elements are used to represent the metal components and three
noded triangular elements are used for the ceramic. Each component is initially
set up as an individual discrete body with contact conditions between the bod-
ies modelled using Coulomb friction. The centreline is modelled using a contact
surface as a shield to prevent any object crossing the symmetry axis. The initial
finite element discretisation is shown in Fig. 6.

The tungsten is modelled using an Armstrong-Zerilli AZUBCC model whilst
the RHA is modelled using an AZMBCC model. Topological changes via erosion
due to plastic strain is employed for both materials. The ceramic is treated as a
brittle fracturing material and is modelled using the rotating crack model.

Two impact velocities, 1325m/s and 1800m/s, are considered.
The development of damage in the ceramic with increasing penetration at

different stages is shown in Figs. 7a -7d. The configuration at t = 200/xs is also
depicted in Fig. 8.

Similar to the previous examples, the a posteriori graph model for discrete
objects achieves better performance, which is demonstrated in Table 3.

■785-

FEUP - Faculdade de Engenharia da Universidade do Porto

(b)

(a)

Fig. 6. Example 3 - Ceramic target impact: (a) initial mesh; (b) zoomed mesh.

Table 3. Speedup obtained by two graph models for Example 3

Model 2 processors 4 processors 6 processors
a priori model

a posteriori model
1.82
1.86

3.52
3.63

4.60
5.33

■786-

VECPAR '2000 - 4lh International Meeting on Vector and Parallel Processing mg

(a) t=10/is (b) t=27fis

(e) t=40//,s (d) t=72.5//s

Fig. 7. Example 3 - Ceramic target impact: Progressive damage indicating regions with
radial fractures

• 7<S7 -

FEUP Faculdade de Engenharia da Universidadc do Porto

Fig. 8. Example 3 - Ceramic target impact: The configuration at t- 200/xs

788 ■

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

7 Concluding Remarks

The algorithmic aspects of a parallel implementation strategy for a combined fi-
nite and discrete element approach are presented in this work. The main features
of the implementation include: 1) a dynamic domain decomposition is applied
independently to both the finite element computation, the contact detection
and discrete element computation; 2) different methodologies can be employed
in the global search and the interaction computations; 3) a dynamic graph re-
partitioning is used for the successive decomposition of the moving configuration;
4) two graph models are proposed for the representation of the relationship be-
tween the discrete objects; 5) load imbalance can be monitored and re-balanced
by the proposed scheme.

By means of numerical experiment, the performance of the proposed algo-
rithms is assessed. It is demonstrated that the dynamic domain decomposition
using the second graph model with dynamic re-partitioning, load imbalance de-
tection and re-balancing scheme can achieve a high performance in applications
involving both finite and discrete elements. It is worth mentioning that the
strategy suggested can also be applied to other areas such as smooth particle
hydrodynamics (SPH), meshless methods, and molecular dynamics.

References

1. Owen, D. R. J., Feng, Y. T., Han, K., and Peric, D.: Dynamic domain decom-
position and load balancing in parallel simulation of finite/discrete elements. In
European Congress on Computational Methods in Applied Sciences and Engineer-
ing (ECCOMAS 2000), Barcelona, Spain, 11-14 September 2000.

2. Brown, K., Attaway, S., Plimpton, S., and Hendrickson, B.: Parallel strategies
for crash and impact simulations. Comp. Meth. Appl. Mech. Engng., 184:375-390,
2000.

3. Hendrickson, B., and Devine, K.: Dynamic load balancing in computational me-
chanics. Comp. Meth. Appl. Mech. Engng., 184:485-500, 2000.

4. Yu, J.: A Contact Interaction Framework for Numerical Simulation of Multi-Body
problems and Aspects of Damage and Fracture for Brittle Materials. Ph.D. Thesis,
University of Wales Swansea, 1999.

5. Feng, Y. T., and Owen, D. R. J.: Argumented digital tree search algorithm in
contact detection. 2000 (to appear).

6. Han, K., Peric, D., Crook, A.J.L., and Owen, D.R.J.: A combined finite/discrete
element simulation of shot peening process, part I: Studies on 2D interaction laws.
Engineering Computations, 2000 (in press).

7. Han, K., Peric, D., Owen, D.R.J., and Yu, J.: A combined finite/discrete ele-
ment simulation of shot peening process, part II: 3D interaction laws. Engineering
Computations, 2000 (in press).

8. Karypis, G., and Kumar, V.: METIS 4.0: Unstructured graph partitioning and
sparse matrix ordering system. Technical Report, Department of Computer Science,
University of Minnesota, 1998.

9. Macedo, J.: An Integrated Approach to the Parallel Processing of Explicit Fi-
nite/Discrete Element Problems. Ph.D. Thesis, University of Wales Swansea, 1997.

-789-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

2

Dynamic Multi-Repartitioning for Parallel
Structural Analysis Simulations

Achim Basermann1, Jochen Fingberg1, Guy Lonsdale1, Jan Clinckemaillie2,
Jean Marc Gratien2, Guillaume Thierry2, and Richard Ducloux3

1
 C&C Research Laboratories, NEC Europe Ltd.,

Rathausallee 10, D-53757 Sankt Augustin, Germany
Tel.: +49/(0)2241/9252-0, Fax: +49/(0)2241/9252-99

{basermann, fingberg, lonsdale}Qccrl-nece.technopark.gmd.de
http://www.ccrl-nece.technopark.gmd.de/

Pam System International, Rue Saarinen 20, F-94578 Rungis SILIC 270, France
Tel.: +33-1 49 78 28 20, Fax: +33-1 46 87 72 02

{je, jmg, gt}9esi.fr
http://www.esi.fr

3 Transvalor, Les Espaces Delta BP 037, 06901 Sophia Antipolis, France
Tel.: +33 (0) 493 95 52 24, Fax: +33 (0) 493 95 52 84

100604.26659compuserve.com
http://www.transvalor.com

Abstract. The DRAMA project was initiated to support the take-up of
large scale parallel simulation in industry by dealing with the main prob-
lem which restricts the effective use of message passing simulation codes
— the inability to perform dynamic load balancing. The central prod-
uct of the project is a library comprising a variety of tools for dynamic
repartitioning of unstructured Finite Element or other mesh-oriented ap-
plications. The input to the DRAMA library is the computational mesh,
and corresponding costs, partitioned into sub-domains. The core library
functions then perform a parallel computation of a mesh re-allocation
that will re-balance the costs based on the DRAMA cost model. This
cost model allows a general approach to load identification, modelling
and imbalance minimisation. We present results for the crash analy-
sis code PAM-CRASH which show the necessity for multi-phase/multi-
constraint repartitioning components. Moreover, we demonstrate how
DRAMA handles imbalance due to adaptive refinement in the case of the
stamping simulation code PAM-STAMP and imbalance due to adaptive
remeshing in the case of the forging simulation code FORGE3.

Topics: crash and structural analysis; parallel and distributed algorithms.

1 Introduction

The DRAMA project [1] was initiated to support the take-up of large scale par-
allel simulation in industry by dealing with the main problem which restricts

the effective use of message passing simulation codes — the inability to per-
form dynamic load balancing. The central product of the project is a library

■791

FEUP - Faculdade de Engenharia da Universidade do Porto

2 Achim Basermann et al.

comprising a variety of tools for dynamic repartitioning of unstructured Finite
Element (FE) or other mesh-oriented applications. The input to the DRAMA
library is the computational mesh and corresponding costs, partitioned into sub-
domains. The core library functions then perform a parallel computation of a
mesh re-allocation that will re-balance the costs based on the DRAMA cost
model. In the following sections, we discuss the basic features of this cost model
which allows a general approach to load identification, modelling and imbal-
ance minimisation. Furthermore, results are presented for the industrial crash
analysis code PAM-CRASH [5] which show the necessity for multi-phase/multi-
constraint repartitioning components [9]. These new partitioning methods allow
load balancing for several computational phases — e.g., stress-strain analysis
and contact treatment in PAM-CRASH — that are separated by synchronisa-
tion points (see also Sect. 4). Moreover, we demonstrate how DRAMA handles
imbalance due to adaptive refinement in the case of the stamping simulation
code PAM-STAMP [7] and imbalance due to adaptive remeshing in the case of
the forging simulation code FORGE3 [6].

2 DRAMA Cost Model

The DRAMA cost model [10] explicitly considers calculation costs w, per sub-
domain i and communication costs Cj,j between sub-domains i and j of the
parallel application code. For the load-balancing re-partitioning algorithms, it
results in an objective cost function F. The model provides a measure of the
quality of the current distribution and is used for the prediction of the effect on
the computation of moving some parts of the mesh to other sub-domains.

The essential feature is that the cost model is mesh-based, so that it is able
to take account of the various workload contributions and communication de-
pendencies that can occur in finite element applications. Being mesh-based, the
DRAMA cost model includes both per element and per node computational
costs and element-element, node-node, and element-node data dependencies for
communication. The DRAMA mesh consists of nodal coordinates and of a list
of nodes per element which is a native data structure (element connectivity) in
most finite element applications.

In addition to data dependencies between neighbouring elements and nodes
in the mesh, dependencies between arbitrary parts of the mesh can occur. For
the PAM-CRASH code [5], such data dependencies originate within the contact-
impact algorithms when the penetration of mesh segments by non-connected
nodes is detected and corrected. The DRAMA cost model allows the construction
of virtual elements [3,10] which represent the occurring costs of such dependen-
cies (see also Sect. 4). A virtual element is included in the DRAMA mesh in the
same way as a real element: as an additional connectivity list of its constituent
nodes.

Types u identify calculation cost parameters per element or per node that
refer to different kinds of elements, different material properties, or generally
different algorithmic parts of the application code requiring different kinds of

■792-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Lecture Notes in Computer Science 3

operations. Communication cost parameters per element-element, node-node,
and element-node connection depend on the amount of data that potentially
have to be transferred for a link between two objects of type u\ and uo-

Different algorithmic parts in parallel application codes that are separated
by explicit synchronisation points are defined as phases within the DRAMA cost
model. DRAMA evaluates the costs per phase iphase. The PAM-CRASH code,
for example, can be considered to consist of essentially two sections; stress-strain
computations including time integration (FE phase) and contact treatment (con-
tact phase) with a global synchronisation in between and also at the end of each
computing cycle.

Cost parameter determination requires application code instrumentation.
Numbers of operations per element/node of type u, nopi{u), can be specified
by counting operations or by time measurements. The sum over all phases of
total calculation times per phase and counting total numbers of computational
operations allow the determination of calculation speeds sfo/c. For communica-
tion, the number of bytes noc(ui,U2) that have potentially to be transferred for
a link between two objects of type uj and uo and communication speeds sc

i°Jnm

have to be specified (latency is not considered). s£°-mm essentially depends on
the specific communication protocol. A suited communication model considering
the message length has to be chosen. Moreover, a correspondence between types
and phases must be given.

With these parameters, the DRAMA cost model has the following form.

p _ V^ max FipflaSe piphase __ iphase , ^^ iphase
Z_^ l i '2 i / < i,j

iphase j

iphase ST AT f \n°Pi{u) iphase V"> AT , nOc(ui,U2)
Wi =2^Ni(U)—^alc- ' Cij = 2^ Nitj(Ul,U2) m

U l U\U2 z>3

Ni(u) is the number of elements/nodes of type u and nopi(u)/s?a'c is the compu-
tational cost of an object of this type. Since only the ratio is relevant both nopi(u)
and s1alc may be specified as relative values if this makes instrumentation easier.
Nij(ui,U2) is the number of elements/nodes in a sub-domain boundary region,
and noc(ui,U2)/s;jmm is the potential communication cost for a link between
two objects of type u\ and u-2-

3 DRAMA Library Interface

The interface between the application code and the library is designed around
the DRAMA cost model and the instrumentation of the application code to
specify current and future computational and communication costs [3]. Thus the
application code has to provide DRAMA, per sub-domain, with the current mesh
description, i.e., the element-node connectivity including the type information.
The elements can be either real or virtual elements. The nodal coordinates are
given in addition.

■793-

FEUP - Faculdade de Engenharia da Universidade do Porto

4 Achim Basermann et al.

Moreover, the application code places the calculation and communication
cost parameters per type at DRAMA's disposal as well as the correspondence
between types and phases.

DRAMA returns the new partition in terms of a new numbering of local ele-
ments and nodes together with the relationships between old and new numbering
systems and the coordinates of the new set of nodes local to a process. The rela-
tionships between old and new numbering systems support the application code
in building send and receive lists.

4 Dynamic Load Balancing with DRAMA

The goal of any load balancing method is to improve the performance of applica-
tions which have computational requirements that vary with time. The DRAMA
library is targeted primarily at mesh-based codes with one or more phases. It
offers a multiplicity of algorithms allowing the different needs of a wide range of
applications (Finite Element, Finite Volume, adaptive mesh refinement, contact
detection) to be covered. The DRAMA library contains geometric (RCB), topo-
logical (graph) and local improvement (direct mesh migration) methods [2]. It
enables the use of leading graph partitioning algorithms through internal inter-
faces to Par Metis and P Jostle [8,11,12].

In comparison with the direct use of graph partitioners, DRAMA has the
following advantages.

1. DRAMA's interface is mesh-based. Since an element-node connectivity list
is an essential component of mesh-based application codes DRAMA can be
easily integrated. Mesh to abstract graph conversion is performed within
DRAMA.

2. Beside graph partitioners, DRAMA offers local improvement (migration)
and geometric methods. Thus, DRAMA is more general.

3. DRAMA supports cost capturing and cost monitoring.
4. DRAMA supports the application code in building new mailing lists after

the re-partitioning.
5. DRAMA allows different element/node type management.

Thus, DRAMA provides pre-defined solutions for most mesh-based codes.
Many applications consist of several phases separated by explicit or implicit

global synchronisation points. This is a challenging problem that requires each
phase to be balanced independently. Fig. 1 (left) illustrates the situtation for
two processors and two phases. Both phases show distinct load imbalance. If
both phases depend on each other, as for the stress-strain and contact phases in
PAM-CRASH, where the computations refer to the same mesh in both phases,
balancing the aggregate costs of both phases is of no use: the two phases have
to be balanced separately. There are two approaches to this problem, one is
to work with a separate division of objects for each phase [4], the other is to
balance each phase on a common partition. The first strategy is advantageous
if all computational sections (phases) of the code work on the entire model.

■794-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Lecture Notes in Computer Science

 . Phase I Phase I
PE1|~ '

PE2

Fig. 1. Left: Load imbalance in two phases separated by two sychronisation points.
Right: Operations in two phases on different parts of the same mesh.

It requires fast communication between the different decompositions in each
computing cycle. If the code works on different parts of the model (mesh) in
different phases it can be favourable to maintain a single mesh decomposition
and save communication time. The latter situation is displayed in Fig. 1 (right).
The first phase refers to the whole mesh, the second only to the left part of the
mesh. For a frontal car crash simulation against a rigid wall with PAM-CRASH,
stress-strain is computed for the whole mesh whereas contact detection and
correction is mainly performed in the front part of the car model.

Here we follow the single mesh decomposition strategy because it is much eas-
ier to implement in existing applications. We show results for the FE phase and
contact phase of PAM-CRASH exploiting the new multi-phase/multi-constraint
options of P Jostle and Par Metis [9,12].

It should be pointed out that the possible gains that can be achieved with
the existing contact-impact algorithmic implementation in PAM-CRASH are
limited:

1. for small processor numbers, the contact-impact phase of the calculations has
been optimised in recent years to the point where it is very much dominated
by the already well-balanced stress-strain calculations;

2. the existence of a non-scaling computational section and (pseudo-) all-to-all
communication, which cannot be handled by the DRAMA library's partition-
ers, produces a dominating cost for larger processor numbers, particularly
when the repartitioning attempts to balance the contact phase across many
processors.

The graph-partitioning is built upon a combined graph of elements and nodes
[2] because a part of the computation is node-based and a part element-based.
The basic objects during contact detection are pairs of nodes and segments of
a surface, the segment being defined by four nodes. These objects are passed to
the DRAMA library as virtual five-node elements in the DRAMA mesh format
[3].

5 Evaluation of Multi-Repartitioning Techniques

To evaluate the performance of different repartitoning methods we compare re-
sults obtained with a test mesh of an AUDI car model which originate from a

-795-

FEUP - Faciddade de Engenharia da Universidade do Porto

Achim Basermann et al.

Table 1. Re-partitioning methods.

method partitioner
1 METIS_mCPartGraphkway, sequential
2 MJostle, sequential
3 MOC-PARMETIS-Partkway
4 MOC-PARMETIS-SR
5 MJostle, parallel
6 PARMETIS-RepartGDiffusion, single phase

PAM-CRASH simulation of a frontal impact with a rigid wall. The mesh data
is stored after 10000 cycles from a total of around 80000 cycles. The model con-
sists of 4-node shell and 2-node beam elements. The total load imbalance after
10000 cycles is 12.1% (load imbalance factors: 1.0002 for stress-strain, 10.642 for
contact). The initial partition has been generated by the original PAM-CRASH
single-phase partitioner at the start of the simulation. Only FE costs have been
considered.

The load imbalance factors are defined as

Al = max^,_l(Wii) (FE)- A2 = m^^) ^

m„ fsr^nphases j\ v~^nphases / j\
maxi=o..p-1(X,/ wj) 2 _ Ej maxi=o„p-i jwj)

tot — , l.„... " ' tot nphases j ^nphases j Enpnases j V^n

j Wi l*i j VT:

xi denotes the mean value of all x,, i = 0..p — 1. \\ot neglects synchronisation
points, whereas \'fot, the real load imbalance, considers them. The value 1 means
optimal load balance.

For : he graph representation of the AUDI mesh we use a combined graph [2]
consisting of elements and nodes where the connections are only between ele-
ments and nodes. We consider the methods listed in Table 1 [8,9,11,12]. Method
6 is a single phase partitioner and is added for comparison reasons, all other
methods are multi-phase/multi-constraint algorithms. Methods 1 and 2 are se-
quential multi-partitioners, all other methods are parallel. MOC.PARMETIS.SR
is a re-partitioner that should minimise load-imbalance and the difference be-
tween the current and the new partition. The latter was not investigated here
but will be checked in detail in future tests.

Table 2 shows the distribution of shell elements, beam elements, nodes and
contact pairs (CPs) per processor (PE) for the AUDI model with 16 sub-domains.
Multi-repartitioner 1 is applied. FE and CO are the costs for the stress-strain
phase and the contact phase. The cost for a beam element is about half the
cost for a shell element whereas the cost for a contact pair is about one third
of the cost for a shell element. These ratios are realistic for PAM-CRASH and
were confirmed by timings within the application code. Therefore, the number
of shell elements is multiplied by 6, the number of beams by 3, and the number

■796-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Lecture Notes in Computer Science 7

Table 2. Distribution of shell elements, beam elements, nodes and contact pairs (CPs)
per sub-domain, AUDI, repartitioner 1.

PE shell beam CP's nodes FE CO
0 1735 6 67 1652 10428 134
1 1738 0 63 1715 10428 126
2 1737 3 67 1744 10431 134
3 1739 0 67 1661 10434 134
4 1739 0 64 1612 10434 128
5 1730 17 63 1622 10431 126
6 1735 6 67 1696 10428 134
7 1735 6 67 1732 10428 134
8 1725 29 67 1567 10437 134
9 1738 3 67 1719 10437 134
10 1739 0 67 1612 10434 134
11 1739 0 67 1702 10434 134
12 1730 17 66 1670 10431 132
13 1739 0 67 1586 10434 134
14 1739 0 67 1644 10434 134
15 1674 129 67 1710 10431 134

total 27711 216 1060 26644 166914 2120
mean 10432.1 132.5

of contact pairs by 2 to obtain the total costs per processor for the stress-strain
phase and the contact phase.

Table 3 displays minimum, maximum, and mean total computational weights
per phase of 16 sub-domains for the AUDI model with all partitioning methods
considered. Cut edges as well as load imbalance factors per phase and total load
imbalance factors are given in addition.

Table 3. Total computational weight per phase, cut edges, and imbalance, AUDI.

meth. FE [min max] CO [min max] edge cut imbalance [FE CO] tot.
1
2
3
4
5

[10428 10437]
[9354 10536]
[10095 10548]
[10158 10632]
[10380 10518]

[126 134]
[132 134]
[128 136]
[126 136]
[130 136]

2193
3116
2308
2682
2641

[1.000 1.011] 1.001
[1.001 1.011] 1.010
[1.011 1.026] 1.011
[1.019 1.026] 1.019
[1.008 1.026] 1.008

6 [9075 11070] [0 1128] 4154 [1.061 8.513] 1.155

The results in Table 3 demonstrate that all multi-partitioning methods are
able to achieve nearly perfect load balance. The multi-partitioners reach a load
imbalance of around 1%, and less, whereas the single phase partitioner ends up
with a load imbalance of about 16%.

797-

FEUP - Faculdade de Engenharia da Universidade do Porto

Achim Basermann et al.

Fig. 2. Multi-constraint Metis (method 3) for a BMW PAM-CRASH model: whole
partition and partition of the contact area.

A graphical representation of the handling of the contact phase is given in
Fig. 2 for a BMW PAM-CRASH model with 52216 shell elements and 368 beam
elements. Multi-constraint Metis (method 3) was applied to partition the BMW
into 8 sub-domains. On the left, the whole partition is displayed, whereas the
part of the partition where contact occurs is shown on the right. For a frontal
crash, contact-impact mainly takes place in the front part of the car. Note that,
due to multi-partitioning, all 8 subdomains share the contact area.

Fig. 3 shows contact cost comparisons for a simulation with the BMW model
using repartitioning after every 10000 steps, on 8 processors of an NEC Cenju-4
system (R10000 processors, 400 Mflops, 200 MB/s maximum network transfer
rate). The elapsed times for contact calculations per step on each of the 8 pro-
cessors are displayed. Costs in the stress-strain phase are balanced with and
without repartitioning.

With DRAMA multi-repartitioning, load imbalance in the contact phase is
markedly decreased (red curves, lower bracket). Data redistribution costs 77 s in
total. Despite the caveat that major computational gains cannot be expected for
PAM-CRASH with the currently existing implementations of the contact-impact
algorithms (see 4), it is nevertheless worthwhile to demonstrate that overall
computational efficiency is indeed increased: The initial total simulation time of
17430 s was reduced to 17040 s. With better scaling contact algorithms as in
[4] and high processor numbers, the total effect of DRAMA multi-repartitioning
would be much more distinct.

For the stamping simulation code PAM-STAMP [7], both contact treatment
and adaptive meshing are sources of load imbalance. Since the typical contact-

-798-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Lecture Notes in Computer Science

73
n
o
u
<u
t/3

u

u o-
u
s

73
U
CO o.
ea
5

;.. Time history
;>with default
■ partition

Time history
': with Metis
: repartitioning

Time steps

Fig. 3. Multi-constraint Metis (method 3) for a BMW PAM-CRASH model: contact
cost comparisons for repartitioning after every 10000 steps (8 processors, Cenju-4).

impact algorithms used within PAM-STAMP applications display better scaling
properties than those within PAM-CRASH and the contact phase calculations
are fairly well distributed across the elements, it is adaptive refinement that usu-
ally makes load imbalance markedly higher than in PAM-CRASH simulations.

The DRAMA library can take account of the new costs due to adaptive
meshing either by the new number of elements and nodes per sub-domain or
by changed cost parameters. In the former case, the refined mesh with old cost
parameters has to be given to the library. The latter case makes sense if the
adaptive refinement is performed in a strictly hierarchical way. DRAMA parti-
tions the coarsest mesh with cost parameters that are multiplied according to
the refinement of the elements. This strategy decreases DRAMA'S memory re-
quirements and increases the speed of the repartitioning. For PAM-STAMP, we
follow this strategy.

Unfortunately, the full impact of dynamic load-balancing for PAM-STAMP
cannot be demonstrated with the parallel prototype integrated with the DRAMA
library during the lifetime of the project. The prototype code includes (physically
unnecessary) nodal calculations for the time integration of nodes corresponding
to the elements modelling the tools: the null shells which are treated as rigid
bodies and used to model the motion of the punch, die and blankholder. These
calculations are removed in more recent versions of the standard PAM-STAMP
code. The impact on the prototype PAM-STAMP with DRAMA was two-fold:

■799-

FEUP - Faculdade de Engenharia da Universidade do Porto

10 Achim Basermann et al.

Fig. 4. Fender PAM-STAMP model (Courtesy General Motors): final mesh.

the normally dominant FE stress-strain calculations (upon which the design for
the use of the DRAMA library in the PAM-codes is based) become subsidiary
to the null shell nodal costs; nodal costs remain imbalanced since restrictions in
the data migration and re-partitioning approach within the PAM-codes mean
that the DRAMA nodal partitions cannot be used. In addition, the parallel
(message-passing) version with adaptive meshing is a recently developed feature
and currently subject to robustness problems when more than one level of re-
finement is introduced (thus additionally limiting the impact of re-partitioning).

Although other options for handling the prototype code are available within
the DRAMA library (an example being node-by-node cost modelling), the fact
that the future versions of parallel PAM-STAMP will resolve the above issues
meant that further investigations with the prototype code was not deemed ap-
propriate, nor was it feasible within the project time-frames.

The results presented in the following are taken from full PAM-STAMP sim-
ulations with an industrial benchmark model — the General Motors fender (final
mesh) illustrated in Fig. 4 — but with cost analysis only for the FE phase, which
includes the use of adaptive mesh refinement.

The performance presented in Fig. 5 is for the fender model with 5180 initial
elements on the blank, using 200 mesh refinement steps (based on a 1° angle
criteria) and a maximum of one refinement level. DRAMA graph repartitioning
was performed at intervals of 4000 computational cycles.

Fig. 5 demonstrates the evolution of imbalance using the ratio of slowest
{Rmax) to average (Ravg) times per process spent in the FE routines, Rt,ar-

-800-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Lecture Notes in Computer Science 11

Perf(

L.9

i.e

i t

JR & critic ooit Mith drag
iranin;
BB

L.7

L.6

1.5

1.4

1.3

1?

L . L

"":

■ ^-1

. \

■: 4 ;. *

',*
'■■£

'■ *

*
*
*

)«
"*«_ T

!* J""% •*•••
">

Ct IP
is *

 1)** ^

0.9
2000 4000 6000 9000 L0000 1.2000 14000 16000 10000

Number of cycles
PSl PAMVIEW 98.0

Fig. 5. Fender PAM-STAMP model (Courtesy General Motors): comparison of stress-
strain imbalance development (Rbai per cycle) with/without DRAMA (repartitioning
every 4000 cycles, 8 processors, Cenju-4).

Rbal = Rmax/Ravg- The comparison is made between a standard run without
DRAMA repartitioning (dark curve with bullets) and the run with DRAMA
(light curve with stars) — both using 8 compute nodes on the NEC Cenju-4.

Two issues are apparent from Fig. 5: First, the mesh refinement generates
high imbalance in the early phases of the simulation that decreases as the sim-
ulation proceeds. Second, with values of Rt,ai close to 1.03 at the repartitioning
points (the multiples of 4000 cycles), DRAMA is very effectively balancing the
FE costs. The reason for decreasing imbalance over the length of the simulation

FEUP - Faculdade de Engenharia da Universidade do Porto

12 Achim Basermann et al.

Fig. 6. Pipe connector FORGE3 model (Courtesy Transvalor): final remeshed parti-
tion.

is that the final mesh includes refinement which is fairly equally distributed over
the model. What is also clear is that one would in practice use more frequent
DRAMA repartitioning.

In the following, full code results are presented for the forging simulation
code FORGE3. Fig. 6 shows the final remeshed partition for a pipe connector
test case.

The new parallel remeshing strategy of FORGE3 including DRAMA is as
follows: provide that each sub-domain has been remeshed independently at fixed
interfaces in a previous time step. Per subsequent step, the nodes at and around
sub-domain boundaries are marked which are to become internal nodes after
repartitioning. The criterion is if remeshing around these nodes improves the
mesh quality. After this first DRAMA repartitioning, remeshing per sub-domain
at fixed interfaces is performed. Finally, DRAMA is called a second time to
achieve good load balance. This strategy is possible due to the speed of reparti-
tioning and data migration, which takes only a few seconds while one time step
or a remeshing takes several minutes in the pipe connector case.

Fig.7 displays speedups on the pipe connector problem using DRAMA, em-
ploying both the mesh migration module and ParMetis single phase graph par-
titioning, on the LAMP PC cluster at NEC (dual processor Pentium-pro PCs
with a Myrinet switch).

-802-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Lecture Notes in Computer Science 13

Fig. 7. Pipe connector FORGE3 model (Courtesy Transvalor): speedups with DRAMA
mesh migration and graph repartitioning (PC cluster LAMP).

For a conrod, a tap fitting, and the pipe connector model, Table 4 shows the
relative performance on 4 processors with respect to the parallel FORGE3 code
without DRAMA — as can be seen, significant computational savings are made.

Table 4. Comparisons of total elapsed times for three test cases with the parallel
FORGE3 code: original and new DRAMA versions.

Test cases Conrod Pipe connector Tap fitting
Original version
DRAMA version

5820 s
4620 s

43500 s
34040 s

54500 s
36066 s

6 Conclusions

As demonstrated by tests with a mesh and a real simulation run of the industrial
code PAM-CRASH, multi-partitioning methods achieve nearly perfect load bal-
ance whereas single phase partitioners fail to improve the initial imbalance. The
new mesh distributions balance both computational phases simultaneously with

■803-

FEUP - Faculdade de Engenharia da Universidade do Porto

14 Achim Basermann et al.

small remaining imbalance. Full code results of the stamping simulation code
PAM-STAMP and the forging simulation code FORGE3 showed that reparti-
tioning with the DRAMA library can handle imbalance due to adaptive refine-
ment as well as adaptive remeshing and thus results in significant computation
time savings.

Acknowledgements

First, the authors would like to thank all our colleagues from the DRAMA
project. The support of the European Commission through the ESPRIT IV
(Long Term Research) Programme is gratefully acknowledged.

References

1. The DRAMA Consortium, Project Homepage:
http://www.ccrl-nece.technopark.gmd.de/DRAMA

2. The DRAMA Consortium: Report on Re-Partitioning Algorithms and the DRAMA
Library. DRAMA Project Deliverable D1.3a [1] (1998)

3. The DRAMA Consortium: Updated Library Interface Definition. DRAMA Project
Deliverable D1.2b [1] (1999)

4. Attaway, S.A., Barragy, E.J., Brown, K.H., Gardner, D.R., Hendrickson, B.A.,
Plimpton, S.J.: Transient Solid Dynamics Simulations on the Sandia/Intel Teraflop
Computer. Supercomputing '97, Technical Paper (1997)

5. Clinckemaillie, J., Eisner, B., Lonsdale, G., Meliciani, S., Vlachoutsis, S.,
de Bruyne, F., Holzner, M.: Performance issues of the parallel PAM-CRASH code.
Int. J. Supercomputer Applications and High Performance Computing, 11 (1)
(1997) 3-11

6. Coupez, T.: Parallel Adaptive Remeshing in 3D Moving Mesh Finite Element.
Numerical Grid Generation in Comp. Field Simulation, B.K. Soni et al., eds.,
Mississippi University, 1 (1996) 783-792

7. Haug, E., Lefebvre, D., Dammak, Y., Taupin, L., de Luca, P., El Khaldi, F.,
Mehrez, F., Culiere, P., Heath, A., Pickett, A.K., Queckbörner, T.: Numerical Sim-
ulation of Industrial Sheet Forming Processes with PAM-STAMP. 4th European
Cars/Trucks Symposium , Schliersee (1995)

8. Karypis, G., Kumar, V.: ParMetis: Parallel graph partitioning and sparse matrix
ordering library. University of Minneapolis, tech. rep. #97-060 (1997)

9. Karypis, G., Kumar, V.: Multilevel Algorithms for Multi-Constraint Graph Parti-
tioning. University of Minneapolis, tech. rep. #98-019 (1998)

10. Maerten, B., Roose, D., Basermann, A., Fingberg, J., Lonsdale, G.: DRAMA: A
library for parallel dynamic load balancing of finite element applications. Proceed-
ings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing,
SIAM, Philadelphia, CD-ROM (1999)

11. Walshaw, C, Cross, M., Everett, M.: Parallel Dynamic Graph Partitioning for
Adaptive Unstructured Meshes. J. Par. Dist. Comput., 47 (2) (1997) 102-108

12. Walshaw, C, Cross, M., McManus, K.: Multiphase Mesh Partitioning. Univ.
Greenwich, London SE10 9LS, UK, tech. rep. 99/IM/51 (1999)

■804-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

PARALLEL EDGE-BASED FINITE ELEMENT
TECHNIQUES FOR NONLINEAR SOLID

MECHANICS

Marcos A.D. Martins, Jose L.D. Alves and Alvaro L.G.A. Coutinho(*)

Center for Parallel Computing
COPPE/Federal University of Rio de Janeiro

PO Box 68506, Rio de Janeiro, RJ 21945-970, Brazil
E-mail: marcos, jalves, alvaro@coc.ufrj .br

Abstract. Parallel edge-based data structures are used to improve
computational efficiency of Inexact Newton methods for solving finite element
nonlinear solid mechanics problems on unstructured meshes composed by
tetrahedra or hexaedra. We found that for tetrahedral meshes, the use of edge-
based data structures reduce memory requirements to hold the stiffness matrix
by a factor of 7, and the number of floating point operations to compute the
matrix-vector product needed in the iterative driver of the Inexact Newton
method by a factor of 5. For hexahedral meshes the reduction factors are
respectively 2 and 3.

1. Introduction

Predicting the three-dimensional response of large-scale solid mechanics problems
undergoing plastic deformations is of fundamental importance in several science and
engineering applications. Particularly in the Oil and Gas Industry, solid mechanics is
being used to improve the understanding of complex geologic problems, thus helping
to reduce risks and operational costs in exploration and production activities
(Arguello, 1998).

Traditional finite element technology for nonlinear quasi-static problems involves
the repeated solution of systems of sparse linear equations by a direct solution
method, that is, some variant of Gauss elimination. The updating and factorization of
the sparse global stiffness matrix can result in extremely large storage requirements
and a very large number of floating point operations.

Explicit quasi-static nonlinear finite element technologies (Biffle, 1993), on the
other hand, may be employed, reducing considerably memory requirements. Although
robust and straightforward to implement, explicit schemes, based on dynamic
relaxation or nonlinear conjugate gradients may suffer from low convergence rates.

In this paper we employ an Inexact Newton method (Kelley, 1995), to solve large-
scale three-dimensional incremental elastic-plastic finite element problems found in
geologic applications. In the Inexact Newton Method, at each nonlinear iteration, a
linear system of finite element equations is approximately solved by the
preconditioned conjugate gradient method. The computational kernels of the Inexact

-805-

FEUP - Faculdade de Engenharia da Universidade do Porto

Newton Methods, besides residual evaluations and stiffness matrix updatings, are the
same of the iterative driver, that is, matrix-vector products and preconditioning.
Matrix-vector products can be optimized using edge-based data structures, typical of
computational fluid dynamics applications (Peraire, 1992, Luo, 1994). For
unstructured grids composed by tetrahedra we found that the edge-based data
structures reduce memory requirements to hold the stiffness matrix by a factor of 7.
Further, the number of floating point operations to compute the matrix-vector product
is also reduced by a factor of 5. For grids composed by trilinear hexaedra memory is
reduced by a factor of 2, while the number of floating point operations decreases by a
factor of 3.

The remainder of this work is organized as follows. In the next section we briefly
review the governing nonlinear finite element equations and the Inexact Newton
methods. Section 3 describes the edge-based data structures for solid mechanics.
Section 4 shows the numerical examples. The paper ends with a summary of the main
conclusions.

2. Incremental Equilibrium Equations and the Inexact Newton
Method

The governing equations for the quasi-static deformation of a body occupying a
volume Q. is,

foil (1)
^- + pb,= 0 in Q ■

dXj

where ov is the Cauchy stress tensor, x, is the position vector, p is the weight per unit
volume and b, is a specified body force vector. Equation (1) is subjected to the
kinematic and traction boundary conditions,

ui(x,t) = uj(x,t) in ru; Gijnj=hi{x,i) in Th (2)

where Fu represents the portion of the boundary where displacements are prescribed

(Uj) and rh represents the portion of the boundary on which tractions are specified

(h). The boundary of the body is given by f = fl(urj, and t represents a pseudo-

time (or increment). Discretizing the above equations by a displacement-based finite
element method we arrive to the discrete equilibrium equation,

^„,+^=0 (3)

-806-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

where Fim is the internal force vector and Fexl is the external force vector, accounting
for applied forces and boundary conditions. Assuming that external forces are applied
incrementally and restricting ourselves to material nonlinearities only, we arrive, after
a standard linearization procedure, to the nonlinear finite element system of equations
to be solved at each load increment,

KTAu = R (4)

where KT is the tangent stiffness matrix, function of the current displacements, Au is
the displacement increments vector and R is the unbalanced residual vector, that is,
the difference between internal and external forces.

Remark. We consider here perfect-plastic materials described by Mohr-Coulomb yield
criterion. Stress updating is performed by an explicit, Euler-forward subincremental
technique (Crisfield, 1990).

Some form of Newton method generally solves the nonlinear finite element system
of equations given by Eq. (4), where the tangent stiffness matrix has to be updated
and factorized at every nonlinear iteration. This approach is known as Tangent
Stiffness (TS) method. The burden of repeated stiffness matrix updatings and
factorizations is alleviated, at the expense of more iterations, by: keeping the tangent
stiffness matrix frozen within a load increment; iterating with the elastic stiffness
matrix, known as the Initial Stress (IS) method. For solving large-scale problems,
particularly in 3D, it is more efficient to solve approximately the linearized problems
by suitable inner iterative methods, such as preconditioned conjugate gradients. This
inner-outer scheme is known as the Inexact Newton method, and the convergence
properties of its variants, the Inexact Initial Stress (IIS) and Inexact Tangent Stiffness
(ITS) methods have been analyzed for von Mises materials by Blaheta and Axelsson
(1997). We introduce here a further enhancement in IIS and ITS methods, by
choosing adaptively the tolerance for the inner iterative equation solver according to
the algorithm suggested by Kelley (1995). We also include in our nonlinear solution
scheme a backtracking strategy to increase the robustness of the overall nonlinear
solution algorithm.

3. Edge-Based Data Structures

Edge-based finite element data structures have been introduced for explicit
computations of compressible flow in unstructured grids composed by triangles and
tetrahedra (Peraire, 1992, Luo, 1994). It was observed in these works that residual
computations with edge-based data structures were faster and required less memory
than standard element-based residual evaluations. We have studied edge-based data
structures for the implicit finite element solution of potential flow problems (Martins
et al, 1997). Following these developments, for solid mechanics problems, we may

-807-

FEUP - Faculdade de Engenharia da Universidade do Porto

derive an edge-based finite element scheme by noting that the element matrices can
be disassembled into their edge contributions as,

Ke = i*;
(5)

s=\

where Ke
s is the contribution of edge s to Ke and m is the number of element edges,

which is 6 for tetrahedra or 28 for hexaedra.

Denoting by E the set of all elements sharing a given edge 5, we may add their
contributions, arriving to the edge matrix,

(6)

The resulting matrix is symmetric, and" we need to store only the upper off diagonal
3x3 block per edge. The edge-by-edge matrix-vector product may be written as,

nedges

Kp= lKsPs
(7)

5=1

where nedges is the total number of edges in the mesh and^s is the restriction of p to
the edge degrees-of-freedom. In Table 1 we compare the storage requirements to hold
the coefficients of the element stiffness matrices and the edge stiffness matrices as
well as the flop count and indirect addressing (i/d) operations for computing matrix-
vector products using element and edge-based data structures for tetrahedral meshes.
All data in these tables are referred to nnodes, the number of nodes in the finite
element mesh. According to Lohner (1994), the following estimates are valid for
unstructured 3D grids, nel ~ 5.5xnnodes, nedges = 7xnnodes.

Table 1. Memory to hold the stiffness matrix coefficients and computational costs for element
and edge-based matrix-vector products for tetrahedral finite element meshes

Data Structure Memory flop i/a

EBE 429 X nnodes 1,386 X* nnodes 198 X nnodes

Edges 63 X nnodes 252 X nnodes 126 X nnodes

For meshes composed by 8-noded hexaedra we performed a study to access the
asymptotic ratio between the number of edges and the number of elements. Figure 1

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

shows, for an increasing number of divisions along each direction of a cube, the
computed ratio between the number of resulting edges and the number of hexahedral
finite elements in the meshes. We may note that the curve tends to an asymptotic ratio
of 13.

27.0

25,0

23,0

3 21'°
a
o>
S 19<° z

17,0

15,0

13,0

40 60

Divisions (N)

80 100

Fig 1. Edges/elements ratio on a cube.

Considering the computed asymptotic ratio, we built Table 2, which compares
memory estimates to hold the stiffness matrix coefficients and operation counts to
compute the matrix-vector products for hexahedral meshes, considering the element-
by-element (EBE) and edge-based strategies. In this Table we considered nel ~
nnodes, nedges ~ 13xnel.

Table 2. Memory to hold the stiffness matrix coefficients and computational costs for element
and edge-based matrix-vector products for hexahedral finite element meshes.

Data Structure Memory flop i/a

EBE 300 X nnodes 1,152 X nnodes 72 X nnodes

Edges 117 X nnodes 336 X nnodes 234 X nnodes

Clearly data in Tables 1 and 2 show the superiority of the edge-based scheme over
element-by-element strategies. However, compared to EBE data structure, the edge
scheme does not present a good balance between flop and i/a operations. Indirect
addressing represents a major CPU overhead in vector, RISC and cache-based parallel
machines. To improve this ratio, Lohner (1994) have proposed several alternatives to
the single edge scheme. The underlying concept of such alternatives is that once data
has been gathered, reuse them as much as possible. This idea, combined with node
renumbering strategies, Lohner (1998), introduces further enhancements in the finite

-809-

FEUP - Faculdade de Engenharia da Universidade do Porto

element edge-based scheme. We have found (Martins et al, 1997) that, for tetrahedral
meshes, structures formed by gathering edges in spatial triangular and tetrahedral
arrangements, the superedges, present a high data reutilization ratio and are simple to
implement. The superedges are formed reordering the edge list, gathering edges with
common nodes to form tetrahedra and triangles. To make a distinction between
elements and superedges, we call a triangular superedge a superedge3 and a
tetrahedral superedge a superedgeö. The matrix-vector product for a superedge3 may
be expressed as,

nedl
KP = I (Ks PS+KSHPS+[+

K
S+2 PS+2)

s=1.4.7...

(8)

and for a superedgeö,

nedb (n\
KP= l{KsPs+Ks+lPs+\+Ks+2Ps+2+Ks+)Ps+)+Ks+4Ps+4+Ks+5Ps+5)

J=I.7,I3...

where ned3 and ned6 are respectively the number of edges grouped as superedge3's
and superedgeö' s. Table 3 gives the estimates for i/a reduction and flop increase for
both types of superedges. We may see that we achieved a good reduction of i/a
operations per edge, with a negligible increase of float point operations.

Table 3. Indirect addressing reduction andflop increase for the superedges.

Type Edges Nodes ia/edge i/a reduction flop/edge flop increase

Edge 1 2 18:1 1.00 46:1 1.00

Superedge3 3 3 27:3 0.50 134:3 0.97

Superedgeö 6 4 36:6 0.33 302:6 1.09

For hexahedral meshes we may gather the edges forming the superedges shown in
Figure 2.

so s8 slö s28

Fig 2. Superedge arrangements for hexaedra.

S10-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The resulting matrix-vector products for each superedge type can be expressed as,

KP = l{KsPs+Ks+lPs+\+Ks+2Ps+2+Ks+lPs+}+Ks+4Ps+4+Ks+5Ps+5)

KP= t(KsPs +Ks+\Ps+\+Ks+2Ps+2 +- + Ks+6P,+6 +Ks+lPs
j=I,9,I7...

(11)

KP = l(KsPs+Ks+\Ps+l+Ks+2Ps+2+-+Ks+l4Ps+U+Ks+l5Ps+l5)
-5=1,17,33...

ned 28

Kp= *Z(KsPs +Ks+lPs+\+Ks+2Ps+2 + - + Ks+26Ps+26 + Ks+27 Ps+2l)
1=1,29,57...

(13)

where nedö, ned8, nedlö and ned28 are respectively the number of edges grouped as
s6, s8, si 6 and s28 types. Table 4 gives the estimates for i/a reduction and flop
increase for these superedge types. We may observe that we also achieved a good i/a
reduction with a negligible increase of float point operations. However coding
complexity is increased, particularly for the si 6 and s28 superedges. For a given finite
element mesh we first reorder the nodes by Reverse Cuthill-Mckee algorithm to
improve data locality. Then we extract the edges forming as much as possible
superedges. After that we color each set of edges by a greedy algorithm to allow
parallelization on shared vector multiprocessors and scalable shared memory
machines. We have observed that for general unstructured grids more than 50% of all
edges can be grouped into superedges.

Table 4. Indirect addressing reduction and flop increase for the superedges.

Type Edges Nodes ia/edege i/a reduction flop/edge flop increase

Edge 1 2 18: 1 1.00 46 1 1.00

s6 6 4 36: 6 0.33 302 6 1.09

s8 8 8 72: 8 0.50 410 8 1.11

sl6 16 8 72:16 0.25 861 16 1.17

s28 28 8 72:28 0.14 1361 28 1.06

FEUP - Faculdade de Engenharia da Universidade do Porto

4. NUMERICAL EXAMPLES

4.1 Performance assessment of edge-based matrix-vector product for tetrahedral
meshes

The performances of the single edge-based matrix-vector product algorithm and the
algorithms resulting from the decomposition of an unstructured grid composed by
tetrahedra into superedges are shown in Table 5 and 6, respectively for a Cray J90
superworkstation and for a SGI Origin 2000 with rlOOOO processors. In these
experiments we employed randomly generated indirect addressing to map global to
local, that is, edge quantities. Table 5 lists the CPU times for the matrix-vector
products on the Cray J90 for an increasing number of edges, supposing that all edges
in the mesh may be grouped as superedgeVs or superedge6's.

Table 5. CPU times in seconds for edge-based matrix-vector products on the Cray J90.

Number ofNedges Edges Superedge3 Superedgeö

3,840 1.92 1.89 1.87

38,400 2.81 2.42 2.23

384,000 11.96 8.12 5.82

3,840,000 102.4 59.64 42.02

38,400,000 1,005.19 579.01 399.06

We may observe that gathering the edges in superedges reduces considerably the
CPU times, particularly for in the superedgeß case. Another set of experiments were
conducted on the SGI Origin 2000, a scalable shared memory multiprocessor. The
average results of 5 runs, in non-dedicated mode, considering a total number of edges
of 2,000,000 are shown in Table 6. We may observe that all data structures present
good scalability, but the superedges are faster. For 32 CPU's the superedgeß matrix-
vector product is almost 4 times faster than the product with single edges.

-812-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 6. CPU times in seconds for edge-based matrix-vector products on the SGI Origin 2000.

Processors Edges Superedge3

22.8

Superedgeö

4 48.0 15.6

8 31.0 15.8 11.1

16 19.0 9.6 6.8

32 10.9 5.8 3.9

4.2 Performance assessment of edge-based matrix-vector product for hexaedrical
meshes

The performances of the edge matrix-vector product algorithm and the algorithms
for the s6 to s28 decomposition of a hexaedrical finite element mesh are shown in
Tables 7 and 8, respectively for a Cray J90 superworkstation and for a SGI Origin
2000. These experiments were also conducted under the same conditions of the
previous experiment, that is, we employed randomly generated indirect addressing to
map global to edge quantities. Table 7 lists for each superedge arrangement the CPU
times for the matrix-vector products on the Cray J90, supposing that all edges in the
mesh can be grouped as s6, s8, si6 or s28 superedges.

Table 7. CPU times in seconds for edge-based matrix-vector products on the Cray J90se.

Data

Structure

nedges=

21,504

nedge s=

215,400

nedges=

2,150,400

Edge 0.011 0.109 1.084

s6 0.011 0.108 1.080

s8 0.014 0.134 1.346

sl6 0.016 0.148 1.483

s28 0.013 0.123 1.233

We may observe that only the s6 arrangement reduces the CPU time when
compared to the performance of the single edge algorithm. This behavior may be
attributed to the code complexity of s8, sl6 and s28 algorithms. We also made similar
experiments on the SGI Origin 2000, a scalable shared memory multiprocessor. The
results, for the same amount of edges are listed in Table 8. We may observe that
although the s6 algorithm is still the faster, all other superedge arrangements are faster
than the single edge matrix-vector algorithm. This may be credited to the memory
hierarchy of the SGI Origin 2000, where data locality plays a fundamental role in
cache optimization. Parallel performance in this case is similar to the results obtained

-813-

FEUP - Faciddade de Engenharia da Universidade do Porto

in the previous set of experiments. For nedges=2,150,000 all superedge arrangements
achieved speed-up's around 4 on 32 processors with respect to a 4-processor run.

Table 8. CPU times in seconds for edge-based matrix-vector products on the SGI Origin 2000.

Data Structure nedges =

21,504

nedges=

215,400

nedges=

2,150,400

Edge 0.011 0.14 1.33

s6 0.006 0.12 0.75

s8 0.007 0.15 1.22

sl6 0.011 0.14 1.01

s28 0.009 0.13 1.23

4.3 Extensional Behavior of a Sedimentary Basin

We study the extensional behavior of a sedimentary basin presenting a sedimentary
cover (4 km) over a basement (2 km) with length of 15 km and thickness of 6 km. The
model has an ancient inclined fault with 500 m length and 60° of slope. The relevant
material properties are compatible with the sediment pre-rift sequence and basement.
We have densities of 2450 kg/m' and 2800 kg/m' respectively for the sediment layer
and basement; Young's modulus of 20 GPa for the sedimentary cover and 60 GPa for
the basement; Poisson's ratio, 0.3 for both rocks. The ratio between initial horizontal
and vertical (gravitational) stresses is 0.429. We assume that both materials are under
undrained conditions and modeled by Mohr-Coulomb failure criterion. Thus, we have
sedimentary cover cohesion of 30 MPa, basement cohesion of 60 MPa, and internal
friction angle of 30° for both materials. The finite element mesh (see Figure 3)
comprises 2,611,036 tetrahedra, 445,752 nodal points and 3,916,554 edges. The
number of superedgeß's is 57% of the total number of edges, while the number of
superedge3's is just 6% of total. We consider the model simply supported at its left
and bottom faces, and we apply tension stresses at the right face and shear stresses at
the basement, opposing the basin extension. The loads are applied in 12 increments,
and the analysis is performed until the complete failure of the model. Memory
requirements to solve this problem employing element and edge-based data structures
are respectively 203.9 and 35.3 Mwords respectively. We solve this problem on a 16
CPU's Cray J90se using the ITS method and the edge-based strategy. Displacement
and residual tolerances were set to 10"\ We selected PCG tolerances in the interval
[10", 10"]. The parallel solution took only 15 minutes of elapsed time, corresponding
to 36 nonlinear ITS iterations and 9,429 PCG iterations. Figure 4 shows the yield ratio
contours in the last load increment. The effects of the fault and the two material layers
may be clearly seen.

-814-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 3. Finite element mesh for the sedimentary basin.

Fig. 4. Yield ratio contours for the sedimentary basin at 1201 load increment.

-815-

FEUP - Faculdade de Engenharia da Universidade do Porto

5. CONCLUSIONS

We presented a fast, parallel, memory inexpensive, finite element solution scheme
for analyzing large-scale 3d nonlinear solid mechanics. Our scheme employ novel
nonlinear solution strategies and suitable data-structures, allowing us to tackle
challenging problems in their full complexity. The novel data structures, based on
edges, rather than elements, are applicable to meshes composed by tetrahedra and
hexaedra. Grouping edges into superedges we may improve further the computational
efficiency of the matrix-vector product, reducing the overhead associated to indirect
addressing, particularly on scalable shared memory multiprocessors.

ACKNOWLEDGEMENTS

This work is partially supported by CNPq grant 522692/95-8. Computer time on
the Cray J90 is provided by the Center of Parallel Computing at COPPE/UFRJ. The
authors are indebted to SGI Brazil for providing computer time on a Cray J90se and
an Origin 2000 at Eagan, MN, USA.

REFERENCES

Arguello, J.G., Stone, CM., Fossum. A.F., Progress on the development of a three dimensional
capability for simulating large-scale complex geologic process, 3rd North-American Rock
Mechanics Symposium, Int. S. Rock Mechanics, paper USA 327-3, 1998.

Biffle, J.H., JAC3D - A three-dimensional finite element computer program for the nonlinear
quasi-static response of solids with the conjugate gradient method, Sandia Report SAND87-
1305, 1993.

Blaheta, R., Axelsson, O., Convergence of inexact newton-like iterations in incremental finite
element analysis of elasto-plastic problems, Comp. Meth. Appl. Mech. Engrg, 141, pp. 281-
295, 1997.

Crisfield, M.A., Nonlinear finite element analysis of solids and structures, John Wiley and
Sons, 1991.

Ferencz, R.M., Hughes, T.J.R, Iterative finite element solutions in nonlinear solid mechanics,
in Handbook for Numerical Analysis, Vol. VI, Editors, P.G. Ciarlet and J.L. Lions, Elsevier
Science BV, 1998.

Kelley, C.T.H. Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia,
1995.

Lohner, R, Edges, stars, superedges and chains, Comp. Meth. Appl. Mech. and Engrg., Vol.
Ill, pp. 255-263, 1994.

-816-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Lohner, R, Renumbering strategies for unstructured-grid solvers operating on shared-memory,
cache-based parallel machines, Comp. Meth. In Appl. Mech. Engrg., Vol. 163, pp. 95-109,
1998.

Luo, H, Baum, J.D., Lohner, R., Edge-based finite element scheme for the euler equations,
AI AA Journal, 32 (6), pp. 1183-1190, 1994.

Martins, M.A.D., Coutinho, A.L.G.A., Alves, J.L.D., Parallel iterative solution of finite element
systems of equations employing edge-based data structures, 8* SIAM Conference on
Parallel Processing for Scientific Computing, Editors, M. Heath et al, 1997.

Papadrakakis, M., Solving large-scale problems in mechanics: the development and application
of computational solution procedures, John Wiley and Sons, 1993.

Peraire, J., Peiro, J., Morgan, K., A 3d finite element multigrid solver for the euler equations,
Al AA Paper 92-0449, 1992.

-817-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Multiplatform Distributed FEM Analysis
System using PVM and MPI

Celio Oda Moretti1, Tülio Nogueira Bittencourt1, and Luiz Fernando Martha2

1 Computational Mechanics Laboratory, Department of Structural and Foundation
Engineering, Polytechnic School, University of Säo Paulo,

Av. Prof. Almeida Prado, trav. 2, no. 83,
CEP 05508-900 - Säo Paulo - Brazil

Phone: +55 11 818-5367 / Fax: +55 11 818-5181
{moretti, tbitten}Ousp.br
http://www.lmc.ep.usp.br

2 Department of Civil Engineering and Technology Group on Computer Graphics -
TeCGraf, Pontifical Catholic University of Rio de Janeiro - PUC-Rio,

Rua Marques de Säo Vicente, no. 225,
CEP 22453-900 - Rio de Janeiro - Brazil

Phone: +55 21 512-5984 / Fax: +55 21 259-2232
IfmCtecgraf.puc-rio.br

http://WWB.tecgraf.puc-rio.br

Abstract. A multiplatform computational system for parallel finite el-
ement structural analysis using a distributed memory environment is
described in this paper. The complete system is comprised by integrated
programs, each of one responsible for a different task: pre-processing,
mesh partitioning (necessary to perform the parallel analysis), struc-
tural analysis and post-processing. The main focus here is the structural
analysis program, showing details of features and added capabilities, nec-
essary to work in a High Performance Computing environment. An ex-
isting finite element method program (FEMOOP) has been adapted to
implement the parallel features. A important feature of this program
is its portability, which allows FEMOOP to work in different computa-
tional platforms, taking advantage of specific capabilities of each plat-
form. FEMOOP works with PVM and MPI libraries. The main objective
of this work is to show the parallel analysis program performance running
in different computational platforms, and using the two communication
libraries PVM and MPI. The two communication libraries have been
used. The processing time and speed-up of model analyses are shown,
and the results are compared and discussed.

1 Introduction

Nowadays a great variety of parallel computer machines are disposable to be

used, each of one with specific capabilities and advantages. However, these ma-

chines usually present different architectures and operational systems, which
represent a barrier to adapt a same parallel analysis program code efficiently to

different machines.

-819-

FEUP - Faculdade de Engenharia da Universidade do Porto

Celio Oda Moretti et al.

In this paper, a multiplatform computational system for parallel finite ele-
ment structural analysis will be presented. This system is capable to work in
different computational platforms and architectures. To attain this capability,
the main feature of the programming code must be the portability, which allows
an easy adaptation to different platforms. The complete system is comprised by
integrated programs, each of one responsible for a specific task: pre-processing,
mesh partitioning, structural analysis and post-processing.

The main focus in this work is the structural analysis program. This program
is called FEMOOP (Finite Element Method - Object Oriented Programming)
[1] and it has been adapted to work in a parallel environment. FEMOOP is orga-
nized using object-oriented concepts of the C++ programming language [2] [3],
and has been developed at the Department of Civil Engineering (PUC-Rio) and
at Computational Mechanics Laboratory (Polytechnic School / LISP). New fea-
tures and capabilities have been added to this originally sequential program to
adapt it to work in a distributed memory environment. This environment uses
the message passing to perform the communication among the various processes.
There are some communication libraries that manage this message passing pro-
cess. FEMOOP can work with PVM (Parallel Virtual Machine) [4] and MPI
(Message Passing Interface) [5]. Both are well know communication libraries
that can be used in different platforms.

In the following sections, the structural analysis program and the computa-
tional environments used to run it will be described. The communication libraries
PVM and MPI will also be described, showing advantages and disadvantages of
each one. Finally, some examples of a same model running in different platforms
and using the two communication libraries will be presented. The processing
time and speed-up of these examples will be compared and discussed.

2 The Analysis System

In the system presented here, the structural analysis is performed by a finite
element program called FEMOOP (Finite Element Method - Object Oriented
Programming) [1], which is organized using object-oriented concepts [2][3]. One
of the most important advantages of the object-oriented programming is the
code extensibility. This feature allows new implementations with minimum im-
pact over the existent code. Another important feature of the program code
is its portability, which allows an easy code adaptation to different platforms.
These two features have allowed the adaptation of the original sequential code
to a parallel environment and to different computational platforms. The paral-
lel environment considered in this work is a distributed memory environment,
which can be comprised by a local area network, a parallel computer or a mul-
tiprocessor machine. In a previous work [6], parallel analyses running in a local
area network was presented. In this case, the local area network can be viewed
as a virtual parallel machine with multiple processors and distributed memory.
In the present work, the analyses will be performed in a parallel computer and

■820-

VEC PAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Multiplatform Distributed FEM Analysis System Using PVM and MPI

a multiprocessor machine. These computational environments will be described
later in this paper.

To adapt FEMOOP to the parallel computational environment a new class
has been created, which is responsible for data manipulation. Also, a series of new
functions has been implemented into existent classes. The first step necessary to
adapt FEMOOP to the parallel environment has been the implementation of a
library responsible for the message passing management. The main objective of
this library is to limit the direct access message passing functions. This access
limitation facilitates an eventual change of the message passing manager or the
addition of a new one. A change or addition of a message passing manager has
impact only over the library code. This parallel procedure library contains all
functions necessary to perform the message passing in a distributed memory
environment. The main functions implemented here are responsible for sending
and receiving messages among processors, for parallel process initialization, and
for the identification of program type (if it is either a master or a task program).
Using these features and facilities, the present version of FEMOOP can work
with two communication libraries: PVM (Parallel Virtual Machine) [4] and MPI
(Message Passing Interface) [5]. These two well know communication libraries
have a portable code, which is an important feature for the work developed
here. The implementation used and characteristics of these two libraries will be
described later in this paper. The user can choose between PVM and MPI at
compilation time.

The parallel programming paradigm adopted here has been the master-slave
model. In this model, the master is a separate program responsible for process
spawning, initialization, reception and display of results, and timing of functions.
The task (or slave) programs are executed concurrently and interact through
message passing. The actual structural analysis is done by the task programs,
each of one responsible for the work corresponding to one substructure. Through
interaction between these task programs, the global solution is obtained and then
it is sent to the master program.

To obtain the linear system of equilibrium equations a substructuring tech-
nique [7] has been employed. When this technique is used, the original structure
is partitioned into a number of substructures, which are distributed among the
processors. The substructure degrees of freedom are classified as internal DOF
and boundary DOF, which are shared between neighbor substructures. The sub-
structures interact through this boundary DOF only. Then, the stiffness matrices
of each substructure are mounted. In this work, the internal unknowns are elim-
inated using Grout method. After this step, a condensed system with terms
corresponding only to boundary unknowns is obtained. All these procedures can
be performed concurrently. To solve the partitioned global system, a parallel
iterative solver has been used. A parallel implementation of the pre-conditioned
conjugate gradient (PCG) method [8][7] has been chosen as the solution method
adopted in this work. Basically, this parallel implementation of the PCG method
consists of parallel operations between matrices and vectors. The sequence of op-

821

FEUP - Faculdade de Engenharia da Universidade do Porto

Celio Oda Moretti et al.

erations is the same both in the parallel and in the sequential versions of the
PCG method.

To employ this substructuring technique, the stiffness matrix A"'!', the force
vector /(,), and the nodal unknowns u'!), corresponding to each substructure ;'.
have been mounted with terms partitioned into internal and boundary terms.
These partitions are presented in Equation 1, where indices / and S correspond
respectively to internal and boundary (or shared) terms.

A-<«> =
K{i)T K{i) tvis As J

./<'
A')
JI
f{i)
JS

. u (i) -
,(i)

(1)

For each substructure, the linear equation system is written in the form

A-}" A'
L/s A

is
(0 .(')

(>•)

Eliminating the internal unknowns, a condensed equation system is obtained

*s,«.y,=7(s\ (3)

where A's and /s are respectively the condensed stiffness matrix and the
condensed force vector, and

-rHi)
Äs K{i)TK{i)' "■IS A7 XIS' (4)

7^ fsi]-K (if rAi)-
IS /V/ /}

(>■)

The global linear equation system can be written in the form

U'=l
"T^V))Tj(i)

(6)

where pis the number of substructures and £<'' is a boolean matrix that describes
the substructure connectivity in the original structure.

The adaptation to different platforms has been done without need of FEMOOP
code changing. The unique requirement is that the desirable communication li-
brary is present in the compilation platform. As already mentioned, the user
chooses the communication library at compilation time. If necessary, the de-
sirable communication library must be compiled and installed in the current
platform. PVM and MPI implementations have a very portable code and both
can be compiled in many different platforms.

The complete analysis system is comprised by integrated programs, each of
one responsible for a specific task. The package MTOOL (Bidimensional Mesh
Tool) [9] has been used as the pre-processor in this work. MTOOL is an in-
teractive graphics program for bidimensional finite element mesh generation.
With this program, the geometry, material properties, and boundary conditions

■822-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Multiplatform Distributed FEM Analysis System Using PVM and MPI

of the model are defined. After the model generation, the structure has to be
partitioned into a number of substructures to take advantage of the parallel en-
vironment. This partitioning is made through the use of PARTDOM program
[10]. The parallel analysis is performed by FEMOOP program. A program named
MVIEW (Bidimensional Mesh View) [11] has been utilized as the post-processor
tool. MVIEW is an interactive graphical program for visualization of structural
analysis results. For a complete description of the entire parallel analysis system,
see [6].

3 Computational Environments

In this work, two computational environments have been used to perform the
parallel analysis. These environments have different architectures and operating
systems, and the analysis program FEMOOP could be used at both environ-
ments without code change. In the following sections, the environments will be
described.

3.1 IBM SP-2

One of the machines used in this work was an IBM SP-2, available from Advanced
Scientific Computation Laboratory (LCCA) of University of Säo Paulo. The
SP2 machine has 12 processors and 4.5 Gb of memory and a great capacity of
processing, data storage and memory, which allows large scale model analyses.

3.2 SUN Ultra Enterprise 3000

Another machine used in this work was multiprocessor workstation SUN Ultra
Enterprise 3000 (E3000). The E3000 machine has 6 processors and 1.5 Gb of
memory. This workstation is a fully dedicated machine to parallel processing,
which allows the total use of the machine capacity. Table 1 presents a summary
of the specifications of the two machines used in this work.

4 Communication Libraries

As already mentioned, FEMOOP can work with two communication libraries:
PVM and MPI, which are briefly described in the following sessions.

4.1 Parallel Virtual Machine (PVM)

PVM is an integrated set of software tools and libraries that emulates a con-
current computing framework on interconnected computers of different archi-
tectures. The main objective of the PVM system is to enable a collection of
computers to be used for concurrent or parallel computation. A heterogeneous
computer network can be viewed as a single parallel computer. In this work,
the 3.3.10 PVM version has been used, which has been developed by Oak Ridge
National Laboratory.

■823-

FEUP - Faculdade de Engenharia da Universidade do Porto

Celio Oda Moretti et al.

Table 1. IBM SP-2 and E3000 specifications

Specification IBM SP-2 E3000

Number of processors 12 6
Memory (GB) 4.5 1.5
Disk space (GB) 109 54
Architecture POWER2 Superscalar

IBM Rise/6000 SPARC version 9
UltraSparc

Operating system AIX 4.1.4 Solaris 2.5.1
Fully dedicated to No Yes
parallel processing

4.2 Message Passing Interface (MPI)

MPI is a message-passing application programmer interface, with specifications
proposed by a broadly committee of vendors, implementers, and users. Any
MPI implementation must respect these specifications, which define protocols
and semantics (such as a message buffering and message delivery progress) used
to manage the message passing process.

In SP2 machine was used the IBM AIX Parallel Environment with a native
implementation of MPI standards [12]. In E3000 machine was used the MPICH
implementation [13], developed by Argone National Laboratory and Mississippi
State University. In the two machines was used the first version of MPI standards
(MPI-1).

5 Examples

In this section, the performance and speed-up of analyses of a same model run-
ning on the two used computational environments are presented. These analyses
have been performed using the two communication libraries PVM and MPI. The
numerical example used to measure system performance is a beam with geom-
etry, boundary conditions and mesh presented in Fig. 1. The model attributes
are: E = 7000 kN/cm2, v = 0.25 and thickness = 1 cm. The model has created
and discretized using a regular mesh of 13x130 plane stress Q8 elements.

5.1 Example 1: IBM SP-2

In this section, the performance and speed-up of the parallel analysis system
running in IBM SP-2 machine are presented. The analyses have been performed
using 1 to 6 processors and using PVM and MPI communication libraries. Fig. 2
shows the total analysis time and Fig. 3 shows the corresponding speed-up.

•824-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Multiplatform Distributed FEM Analysis System Using PVM and MPI

100 kN

10 cm

Fig. 1. Model geometry, boundary conditions and mesh

240

220

200

180

160

140

120

100

80

PVM
MPI

3 4
number of processors

Fig. 2. Total time consumed to complete the model analysis using PVM and MPI
communication libraries running on a IBM SP'2

■825-

FEUP - Faaddade de Engenharia da Universidade do Porto

Celio Oda Moretti et al.

3 4
number of processors

Fig. 3. Speed-up of model analysis using PVM and MPI communication libraries run-
ning on a IBM SP2. The linear speed-up represents a system with ideal scalability

5.2 Example 2: SUN Ultra Enterprise 3000

In this section, the performance and speed-up of the parallel analysis system
running in a SUN Ultra Enterprise 3000 machine are presented. The analyses
have been performed using 1 to 6 processors and using PVM and MPI com-
munication libraries. Fig. 4 shows the total analysis time and Fig. 5 shows the
corresponding speed-up.

The results presented in Figures 2 to 5 show that MPI library performance is
often better than PVM library, mainly in the SP-2 machine. The use of a native
implementation of MPI library in the SP-2 machine increases its performance
and machine scalability, which can be seen in Fig, 2 and 3. This native imple-
mentation, developed by IBM, explores the SP-2 capabilities more efficiently
than the portable implementation of PVM. In the E3000 machine, portable im-
plementations of PVM and MPI have been used and the performances of both
are very close.

6 Conclusions

The parallel analysis system presented can work in different parallel platforms,
such as a parallel supercomputer, a multiprocessor machine or a local area net-
work. This feature allows the use of the same parallel analysis program in the
currently available platform. With this flexibility, the user can performs a low
cost parallel analysis using an available local area network, or a high performance
parallel analysis using a parallel computer.

■826-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Multiplatform Distributed FEM Analysis System Using PVM and MPI

1 ' 1 1

PVM

-

MPI

-

-

1 1 n •
3 4

number of processors

Fig. 4. Total time consumed to complete the model analysis using PVM and MPI
communication libraries running on a Sun Ultra Enterprise 3000

2 3 4
number of processors

Fig. 5. Speed-up of model analysis using PVM and MPI communication libraries run-
ning on a Sun Ultra Enterprise 3000. The linear speed-up represents a system with
ideal scalability

■827-

FEUP - Faculdade de Engenharia da Universidade do Porto

Celio Oda Moretti et al.

The adaptation to a new computational environment is done without code

change, which allows an easy compilation work. The performance results pre-

sented in this work show that this parallel analysis system can explore the

capabilities of different machines very efficiently. The use of PVM and MPI
communication libraries gives more flexibility to this system and increases the
number of platforms that can be used.

References

1. Martha, L.F., Menezes, I.F.M., Lages, E.N., Parente Jr., E., Pitangueira, R.L.S.: An
OOP Class Organization for Materially Nonlinear Finite Element Analysis, Joint
Conference of Italian Group of Computational Mechanics and Ibero-Latin American
Association of Computational Methods in Engineering, Padova, Italy, Sep. 1996. pp.
229-232. 1996.

2. Fujii, G.: Anälise de Estruturas Tridimensionais: Desenvolvimento de uma Ferra-
menta Computacional Orientada para Objetos, Dissertagäo de Mestrado, Dep. de
Engenharia de Estruturas e Fundacöes (PEF), Escola Politecnica, USP, 1997.

3. Guimaraes, L.G.S., Menezes, I.F.M.. Martha, L.F.: Object Oriented Programming
Discipline for Finite Element Analysis Systems (in Portuguese), Proceedings of XIII
CILAMCE, Porto Alegre, RS, Brasil, Vol. 1, pp. 342-351, 1992.

4. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderman, V.:
PVM: Parallel Virtual Machine - A User's Guide and Tutorial for Networked Parallel
Computing, MIT Press, Cambridge, 1994.

5. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete
Reference, The MIT Press, Cambridge, Massachusetts, 1996.

6. Moretti, CO., Bittencourt, T.N., Martha, L.F.: A Low Cost Distributed System
for FEM Parallel Structural Analysis, VECPAR'98 - 3rd International Meeting on
Vector and Parallel Processing, Porto, Portugal, June 21-23, pgs 1063-1075, 1998.

7. Nour-Omid, B., Raefsky, A., e Lyzenga, G., Solving Finite Element Equations on
Concurrent Computers, in A.K. Noor, Ed., Parallel Computations and Their Impact
on Mechanics, pp. 209-227, ASME, New York, 1987.

8. Hestenes, M. e Stiefel, E., Methods of Conjugate Gradients for Solving Linear Sys-
tems, Journal of Research of the National Bureau of Standards, Vol. 49, No. 6, pp.
409-436, Research Paper 2379. December 1952.

9. MTOOL - Bidimensional Mesh Tool (Versäo 1.0) - Manual do Usuärio, Grupo de
Tecnologia em Computagäo Gräfica - TeCGraf / PUC-Rio, 1992.

10. Moretti, CO., Bittencourt, T.N., Andre, J.C., and Martha. L.F., Algoritmos Au-
tomäticos de Partigäo de Dominio, Boletim Teenico, Departamento de Engenharia
de Estruturas e Fundacöes, Escola Politecnica - USP, 1998.

11. MVIEW - Bidimensional Mesh View (Versäo 1.1) - Manual do Usuärio, Grupo de
Tecnologia em Computagäo Gräfica - TeCGraf / PUC-Rio, 1993.

12. IBM AIX Parallel Environment: MPI Programming and Subroutine Reference, No.
GC23- 3894

13. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard, Parallel Computing, v.
22, no. 6, pp. 789-828, 1996.

828-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Synchronous NonLocal Image Processing on
Orthogonal Multiprocessor Systems

Leonel Sousa and Oliver Sinnen

Department of Electrical Engineering IST/INESC
R. Alves Redol 9, 1000 Lisboa, Portugal

lasQinesc.pt

Abstract. A method for mapping nonlocal image processing algorithms
onto Orthogonal Multiprocessor Systems (OMP) is presented in this pa-
per. Information is moved between memory modules by alternating the
processors mode of accessing the memory array. The introduction of syn-
chronisation barriers when the processors attempt to change the mem-
ory access mode of the OMP architecture synchronises the processing.
Two parallel and nonlocal algorithms of the low and intermediate image
processing levels are proposed and their efficiency is analysed. The per-
formance of the OMP system for these type of algorithms was evaluated
by simulation.

1 Introduction

The OMP architecture can be classified as a parallel shared memory architec-
ture [5,8]. The most important characteristics of a n-processor OMP architecture
are (see Fig. la): i) the memory is divided in n2 memory modules organised as a
two-dimensional array; ii) the processors and the memory modules are intercon-
nected by non-shared buses; iii) processors are allowed to concurrently access
distinct rows or columns of the memory array.

The OMP architecture has two different mutually exclusive modes of oper-
ation, which correspond to different ways of accessing the memory: row access
mode and column access mode. With the architecture in row access mode, any
processor Pi has direct access to the row i of the array of memory modules
(Mij 0 < j < n); with the architecture in column access mode, any pro-
cessor Pi has direct access to the column i of the array of memory modules
(Mj:i 0 < j < n). Therefore, the system buses are not shared and the memory
access is free of conflicts in each one of the access modes.

The communication between any pair of processors of an OMP architecture
can take place on two different memory modules: e.g. the pair of processors
(Pi,Pj) can communicate through the memory modules (Mij,Mjj). On the
other hand, modules located on the main diagonal of the memory matrix are
only accessed by a single processor: e.g. module M^; is only accessed by processor
Pi.

■829-

FEUP - Faculdade de En^enharia da Universidade do Porto

(Ml \M*<

rrf^

in
3.0

'Ml,
0,1

^

©

M k
0.3

L_u/

(MP fM^?^ LILT Ui/V^

/tpixels

*pix.isT [rnrnrnrn
* l O-OJL O-'Jl 0.2JI 0.3J

(a) (b)

Fig. 1. OMP architecture with 4 processors: a) logical diagram; b) distribution of the
image by the memory modules.

Spatial (image) parallelism is often found in low and intermediate level image
processing operators [11]. Unlike task parallelism, in image parallelism the algo-
rithm is applied in parallel to separated parts of the original image. Generally,
OMP systems have a rather low number of processors relatively to the number
of pixels of an image. The image is distributed by the processors of an OMP
architecture by mapping the array of pixels into the array of memory modules
(see Fig. lb): a N x N image is divided into n2 sub-images, with K = N/n
neighbour pixels, and sub-images with neighbour pixels are placed in adjacent
memory modules.

This paper presents the design and analysis of nonlocal image processing par-
allel algorithms for OMP systems. The parallel algorithms considered, presup-
pose the above mentioned distribution of the image among the memory modules.
This paper begins by presenting a general method for mapping nonlocal image
processing on OMP systems (Section 2). Afterwards some parallel algorithms for
typical image processing tasks are proposed (Section 3). In Section 4 the per-
formance of an OMP image processing system is evaluated using the simulation
results. Finally Section 5 is devoted to the conclusions.

2 Nonlocal Image Processing on OMP Systems

The fundamental difference between nonlocal and local image processing is due
to the restriction-less location of the pixels needed to process the image, in the
first case. Thus there is a much more demanding interaction between processors
in nonlocal image processing tasks. The rules that govern the information trans-
fers can be unknown a priori, because they depend on the processing parameters
and/or on the image content.

Communication oriented models of parallel processing explicitly include com-
munication aspects of the processing. The parallel processing results from an
alternate sequence of stages: a computation stage followed by a communication

■830-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

stage [14]. In a computation stage, the processing is carried out independently by
the multiple processors. In the communication stages, instead, nonlocal informa-
tion, required for the next processing stage, is exchanged among the processors.

With the image parallelism approach, parallel processing stages consist on
the application of similar image processing operators to different parts of the
image. The processors of a OMP system have direct access to the image pixels
stored on the row and column modules of a two-dimensional memory array.

^ address

"BIO S"S

2) I
V..L.

65

(06
(a) (b) (c)

Fig. 2. Data transfer procedure for nonlocal image processing on OMP systems.

Nonlocal image processing often requires that random transfers of data be
carried out at the communication stages. As referred in Section 2, processors of

an OMP system may exchange data through pairs of exclusive memory modules.

Therefore, if the processor P; needs to access data stored on the memory module

Mjtk it has to establish communication with processor Pj or Pk. With the OMP
architecture in the column access mode, data can be moved using the following

procedure (the procedure is illustrated in Fig 2 for P0 and M3)2): step a) P,

places the address of the data, namely the index of array memory row and the

relative position inside the module, on the memory Mjti; step b) memory access

mode is changed and Pj accesses the data address on Mjti and moves the data

from Mj:k to M^*; step c) the architecture is put back in the initial memory
access mode and processor Pi directly accesses the claimed data on the Mjj
memory.

This procedure can be extended in order to transfer data and partial results
concurrently among any processors of a OMP system. At the end of a processing
stage, the addresses of the data to be transfered are placed in the memory
modules according to the rules presented above. Processors request a change of
the memory access mode to signal the transition from a processing stage to a
communication stage. These requests are used to implement a synchronisation
barrier: each processor reaching the barrier waits until all other processors have
also reached the barrier. A communication stage begins by changing the memory
access mode of the architecture. Then, each processor looks for the addresses of

■831

FEUP - Faculdade de Engenharia da Universidade do Porto

the data that have to be moved on all memory modules of a row (see Fig. 2b)
and undertakes the task. In spite of the data being concurrently moved by the
processors, there is no guarantee about a fair work distribution between the
processors, since the source and destination addresses are unknown a priori. The
exit of a communication stage is made by implementing another synchronisation
barrier with the requests of the processors for changing the memory access mode
of the architecture.

The time spent in the communication stages can lead to a considerable de-
crease of the system efficiency. The procedure proposed for global transfer of
data is simple and general but can, itself, present the following drawbacks: a)
the time spent for the data transfer can be relevant relatively to the processing
time; b) the task of data transfer can be unbalanced among the multiple pro-
cessors. Statement a) is connected with the granularity of the parallelism and
with the time spent in the control of the architecture. The other statement also
influences the time spent in the communication stages. An unbalanced transfer
load can also contribute to the lowering of the processing efficiency.

These problems are referred in the following sections with the analysis of typ-
ical nonlocal image processing tasks. Efficient parallel algorithms for geometric
image transformations and for the Hough transform are subsequently proposed.

3 Nonlocal Image Processing Parallel Algorithms

Two parallel algorithms used in nonlocal image processing tasks are proposed: an
algorithm for image rotation, that requires a nonlocal exchange of information
as a function of the rotation parameters; and an algorithm for computing the
Hough transform of an image, which is a transformation commonly applied in
intermediate level image processing.

The Image Rotation

Geometric transformations, namely rotation, are usually used for image normal-
isation [7]. For rotating an image by 6 around a centre point (io,Jo), pixel values
have to be moved to new locations, which have to be calculated through the
parametric equations. Due to the discrete nature of the image representation,
a well defined one-to-one transformation is applied to each pixel of the rotated
image (i',f) to calculate its location on the original image (i,j):

i = R;Hi',f, 6) = L(»' - *o) cos0 + (j' - j0) sinÖ + i0J

j = R-l(i',f,e) = [(f - jo) cosö - (*' - i„) sin0 + j0J . (1)

Pixel {i',j') of the processed image receives the value of pixel (i,j) of the
original image, or a new value resulting from the interpolation of the values of
the pixels that surround (i,j) [7].

The method for exchanging information on the OMP architecture, presented
in the previous section, can be applied directly in parallel to the rotating pixels

■832-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

of different sub-images. The coordinates of the pixels of different sub-images are
computed in parallel and their values are placed in the proper memory modules.
Two main decisions have to be taken in order to have a full specification of the
parallel algorithm: the number of pixels that should be processed in parallel and
their locations in the sub-images.

For taking the first decision two opposite conditions have to be considered: a)
for each communication stage the memory access mode has to be changed twice
and all memory modules have to be checked—more pixels per processing stage
allows less relative time spent in communication; b) the extra memory required
grows with the number of pixels processed per stage—the worse situation occurs
when the n coordinates calculated by a processor stay in the same memory
module (C(n3) extra memory). The premise assumed in this paper points to the
processing of n pixels by each processor in a certain processing stage.

The location of the pixels influences the balancing of the work load of the pro-
cessors during the communication stages. In order to analyse the requirements
of data movement, in the perspective of an orthogonal transfer, lets suppose that
the transfer take place through the rows of the memory modules and consider
the two simplified situations: a) the rotation of an image around its central point,
using an algorithm that processes in parallel n pixels (1 pixel per processor) of
an image row; b) a situation similar to the described above, except that the
pixels to be processed belong to a single column of the image. This last situation
is only used for analysing data transfer, because, in column access mode, the
pixels can not be processed in parallel.

For the a) situation pixels processed in parallel have the same i' coordinate
and a j' coordinates that differs by multiples of K (see Fig. lb), while for the
b) situation an inverse relation between coordinates is observed. The pixels pro-
cessed in the a) situation give rise to coordinates of the original image (Eq. 1)
in the following rows of the memory array:

0 ll111 i I I I II ill:1 I II I I I I I I ' 1 I I 111 1 I I I[I I!Ill I il II I I i I I III I !I I!I I I 1 II I I I
Oco^cs'^rf^i'fcosOrT — —• — ^ocvoor--i— sO

o —.r-4i"*~i<j~i 'a-v-i^oe-joocio"''*-) — &■ r-- v~,

r""l o O •"'"i "O'Tfl—*T CT- c*1 — f*"i OO c*-) oO ft
Ö d - - <-< <-J" <-i — ■» °» •» "> ■"? ""i "! "-.

I/|SIN(8)|

l/|COS(e»|

6(rad)

Fig. 3. Number of pixels to be transferee! per row of memory modules (1 pixel per
processor) for image rotation.

■833-

FEUP - Faculdade de Engenharia da Universidade do Porto

L*/«J
(i' -i0)cos9 (f -jo) sin 9

+ IQ/K + £ x sin 9\ ; 0 < £ < n (2)

In this case, the coordinates of two pixels go to the same row of memory modules
for f x sin 8 < 1. So, the number of coordinates that go to a single row of memory
modules (Aa) can be approximately expressed by the equation A0 = 1/| sin#|.

In the b) situation pixels go to the memory modules of the following rows:

... . .(i'-io)cos9 (j' - jo) sin 9
L*/«J = L- + - — +io/K + txcosd\ ; 0<f<n . (3)

K K

The number of coordinates that go to a single row of memory modules (A&) can
be approximately expressed by the equation Aa = l/|cos#|.

A diagram of both functions (Aa and A&) is depicted in fig. 3. The maximum
number of coordinates in fig. 3 should not be infinite, but limited by the number
of pixels processed. However, the diagram of fig. 3 shows that the maximum
values of the functions Aa and A& are out of phase (TT/2). Moreover the maximum
value of one function corresponds to the minimum value of the other, thus, if
the coordinates of n rows of pixels (6 situation) with n pixels each (a situation)
are calculated in each processing stage then the maximum number of pixels
that have to be transfered per memory row results from the combination of the
numbers found for both situations.

X ,

1.8 - 1.87701 O r

1.6 -

1.4 -

1.2 ■ '^J^' '^Vf^^S?
0.8 ■

0.6 -

0.4 -

0.2 -

0 ■ III '1 III! 1 II III II 1 III II II ilII III III Milllllllllll1 I II1 llllillllll III

-n=!6 N=256

-n=8N=256

-n=4 N=256

-n=16N=!6

6(rad)

Fig. 4. Mean values of the maximum number of pixels that have to be transfered for
a row of memory modules (n pixels per processor) for image rotation.

The diagram of fig. 4 displays the mean values of the maximum number of
pixels that have to be transfered in a row of the memory modules, for rotating an
image around its central pixel. The diagram, obtained by computer simulation,

-834-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

shows that no more than 2 x n pixels have to be transferee! in any row of the
memory modules. The maximum number of pixels occurs when the rotation angle
is multiple of n/4—the intersection points of the functions A in the diagram of
the fig. 3.

do_all processors (<fi — 0,. . . , n — 1)
for 1 =0 to K2 — 1 do begin
R<t,.h := 0 { number of pixels to transfer }

<_L mode >
for m =0 to n — 1 do begin

{ computes-(z, j) Eq. 1 for i' = m x K + [1/K\; j
if (i and j inside the image limits) then begin

Li/*J.* Pm.4, := i; Q — R
end
else Pm,0 := -1

end
<f- mode >
for h =0 to n — 1 do begin
for m =0 to R^,h do begin

i := S^.h[m).x\ j := S,
end
Rf.h ■= 0

end
<_L mode >
for m —0 to n — 1 do begin
if (Pm,4> > 0) then begin
W := Pm.a; Q := flm,«++

end
end_all

x K + / mod K }

+ + ; Sli/Kh4,lQ].x := j; Sli/rtj^[Q}.y := j

[m].y; T^^lm) — I.Oityj/xi [i mod «][j mod K

l.Pm,4,{\l/K\][l mod K] := Tlw/Ki^[Q]

Algorithm 1 : Image rotation on the OMP architecture.

The parallel algorithm for the image rotation on an OMP architecture is for-
mally specified in Algorithm 1. The construct do_all processors (</> — 0,..., n-
1)... encLall means that the processing inside the block is done in parallel by
the n processors. The construct < ... > indicates a synchronisation point for
changing the memory access mode of the architecture (h for row access and
± for column access). Data structures are named using capital letters. Indexes
are associated to them, for indicating the modules used, whenever the variables
are stored in the shared memory. The original and processed image arrays are
identified by the symbols 1.0 and I-P, respectively.

Lines 1 and 2 of the Algorithm 1 are devoted to the parallel computation
of the coordinates of n pixels and to its placement on the adequate modules
for orthogonal data transfer. Pixels of the original image are moved across the
modules of each row of memory modules in line 3, with the architecture in
the row access mode. In line 4, the values of the pixels are placed on the new
coordinates, with the architecture in the column access mode. The procedure is
repeated K

2
 times for processing all the N x N pixels of an image.

The complexity of the algorithm is C(^-) for lines 1, 2 and 4. The maximum
number of pixels which have to be transfered in a row of memory modules (line

5 of the algorithm) is proportional to — (see fig. 4). Therefore, the Algorithm 1

is 0{^-) and has an efficiency of 100%.

■835-

FEUP - Faculdade de Engenharia da Universidade do Porto

The Hough Transform

The Hough transform, which is often applied for shape analysis due to its ro-
bustness to noise [1], is calculated using information about the binary edges of
the images [6]. For detecting collinear points, the edge point (i,j) is transformed
in a set of {pi,9i) ordered pairs—p is the normal distance from the origin of the
image to the line and 8 is the angle of this normal with the horizontal axis. The
following parametric equation is applied for any (i,j) using a stepwise increment
for 9, (09):

Pi = j x cos9i +i x sin9\ (4)

with collinear points voting to a common value {px,9x).
The processing load involved in the calculation of the Hough transform de-

pends on the image features. Therefore, the distribution of the sub-images of
equal size by the processors is not enough for guaranteeing the balancing of the
processing load. One way of balancing the work of the processors is by segment-
ing the Hough space and by forcing each processor to compute Eq. 4 for all edge
pixels of the image but only for a range of 9t [2]. With the image distributed by
the memory modules, an algorithm of this type demands the transmission of the
coordinates of the edge points found by each processor to all other processors.

J <-^>

,4 M
0,0

M
0,1

M
1.0

M
1,1

M
0,n-l

M
l,n-l

P, <^£

I
n/56/n

M
0,0

M
0,1

M
1,0

M
i,i

M
0,n-l

M
1,0-1

M
n-1,0

M
n-1,1 n-l,n-l

M
n-1,0

M
n-1,1 n-l,n-l

Fig. 5. Distribution of the image and the transformed space by the shared memory.

Let's distribute the image and the Hough space by the memory modules as
depicted in Fig. 5. Each processor must transmit the coordinates of the edge
points found in a set of pixels of its sub-image to all other processors, during a
communication stage. If the pixels of the different sub-images that are processed
in parallel have the same relative positions, the quantity of information which
has to be transmitted can be reduced: only binary data about the presence of
edges among the pixels is required.

A parallel algorithm for the Hough transform calculation on an OMP ar-
chitecture is formally specified in Algorithm 2. This algorithm guarantees the
balancing of the processing by the multiple processors, but requires an angular
resolution {59) such as: n < n/58.

■836-

VEC PAR '2000 - 4th International Meeting on Vector and Parallel Processing

do_all processors (0 = 0, n — 1)
for 1 =0 to K2 - 1 do begin

R := 0
for m =0 ton- 1 do begin

<_l_ mode >
I. if (/_Om $[[//K|][/ mod K] ^0) then R := fi + 2m

Tm,0 := Ä
end
<H mode>
for h =0 ton- 1 do begin

R '•= T^.h
for m=0 to n — 1 do begin
\f({R A 01) / 0) then begin
for t = o x jfä- to (<p + 1) x j^^ - 1 do begin { pmax wl,5xiV}

2. W := ((/ mod K + h X K) X cos[t] + {1/K + m X K) X sin[i])/1.5
3. I-P0,iw/K\[t~0x jeTTJtL^J mod«]++

end
end
R := R/2

end
end

end
end_all

Algorithm 2 : Hough Transform of images on the OMP architecture.

Processors start a communication stage checking for the presence of edges
among n pixels of a sub-image, loca'ted on the n different modules of a column—
information about the location of these pixels is not relevant, since it is common
to all processors. Information about the found edges is coded on a single memory
word and transmitted through all memory modules of a column (line 1 of the
Algorithm 2). The architecture operation mode is changed for the row memory
access and each processor collects and decodes the information transmitted by
all other processors, consulting all the memory modules in a row. Every time an
edge is found each processor computes Eq. 4 for a range of values of 9i—j^i
different values—(line 2 of the Algorithm 2). The Hough space is distributed in
such a way that the resulting p values calculated by a processor are locally stored
in the row of memory modules accessible to it (see Fig. 5). The accumulators in
the Hough space are actualised with no further need of data moving (line 3 of
the Algorithm 2).

Supposing an image with C edge points, the complexity of line 2 of the
Algorithm 2 is Ö(C x j^^) (computation of Eq. 4). The coding and the transfer

of information about the edges (line 1 of the Algorithm 2) takes O(-) more
steps. The overall efficiency of the processing for Algorithm 2 is Ö(N2 x se*),

since C < N2.

The parallel algorithms proposed for image rotation and Hough transform
on an OMP architecture have a processing efficiency of 100%. However, in prac-
tice, the time spent in communication limits the performance of the processing
systems. The operation of an OMP system was simulated by computer, in order
to predict the performance of a real image processing system.

■837-

FEUP - Faculdade de Engenharia da Universidade do Porto

4 Performance Analysis

In this section, the performance of an image processing OMP system is evaluated
based on results obtained by computer simulation. The simulations have been
done by adopting an algorithm driven approach and by using programming
tools developed by the authors [10]. These tools allow the inclusion of detailed
information about the operation and characteristics of the target OMP systems
in the simulation process. It is therefore possible to achieve simulation results
with a great degree of fidelity.

Several parallel image processing systems with different characteristics can be
designed around an OMP architecture [4,9]. The systems can use different types
of components and can adopt specific techniques for accelerating the access to
the shared memory {e.g. interleaved memory access mechanisms). The charac-
teristics of the processing discussed in this paper point to the use of processors
able to perform fast floating point operations and with a very short memory
access cycle. The control of the image systems should be simple, allowing the
implementation of synchronisation barriers and the change of the memory access
mode with small waste of time.

An image processing system with the following principal characteristics was
simulated: a) the specifications of the individual processors are related to the
ones of a signal processor [13]—16 MIPS and 33 MFLOPS approximately, and
a cycle time of about 60 ns; b) the number of instruction cycles needed for
changing the system memory access mode is considered to be 10; c) read and
write memory operations take only 1 instruction cycle; d) simple memory access
schemes are considered, without memory interleaving.

The simulations of the OMP system were carried out with the parallel algo-
rithms proposed for the image rotation and the Hough transform. The expected
processing times for the OMP system were collected from the simulations and
are presented in Tables 1 and 2. Simulations are made with 512 x 512 images
under different conditions that regard: a) the parameters of the processing; b)
the number of processors used; c) the features of the images used for the Hough
transform. For the simulations with the Hough transform a synthetic image (see
fig. 7a) and a real image were used (see fig. 7b), by applying the Marr algorithm
for edge detection [3]—application of the Laplacian operator to the image previ-
ously filtered with a Gaussian function (a — 1.5). The edge detection algorithm
uses local processing which is easily mapped onto an OMP architecture [12].
Table 2 also present the expected processing time for the edge detection parallel
algorithm.

For each of the different situations, the tables show the processing efficiency
(£T) mean and standard deviation for different numbers of processors, within a
range between 4 and 32. ET is defined as the quotient between the time of the
sequential processing and the time of the parallel processing multiplied by the
number of processors.

Table 1 presents the times spent with Algorithm 1, for the image rotation
according to various rotation angles (6). The efficiency is generally not high, with
communication and processing stages taking comparable times. The processing

•838-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

512 < 512 images; (o = 256, jo = 256); bilinear interpolation
9(°) execution time (ms) er a(£r)

IProc \iProc \%Proc.\WFroc.yi2Froc.
15 918 | 465 | 249 | 150 | 92 41.2 7.1
45 877 | 517 | 299 | 178 | 106 34 6.2
60 886 | 475 | 264 | 164 | 100 37.5 7.3
90 975 | 451 | 219 | 110 | 57 54.6 0,9
180 975 451 | 218 | 109 | 55 55.3 0.8

Table 1. Performance of the OMP system for image rotation.

times approach the video frame rate when the number of processors increases to
32. The mean value of the efficiency varies with the rotation angles in agreement
with the analysis presented in the previous section. Other simulations are made
by duplicating the number of pixels considered in each processing step. For the
lowest mean value of the processing efficiency (9 = 45°) an improvement of
approximately 5% is achieved, while for the highest mean value (9 = 180°) an
improvement of approximately 7% is achieved.

16
Processors

32

Fig. 6. Processing efficiency for image rotation.

Rotation angles that initially lead to greater processing times give rise to
images with regions of pixels that do not have a correspondence with those of
the original image. This problem results in a non uniform distribution of the
processing load and reinforces the weight of communication times in the total
time spent.

Table 2 presents the times spent in the edge detection and the Hough Trans-
form tasks for two different types of images: a synthesised binary image (Fig. 7a)
and a real image with 256 grey levels (Fig. 7b shows the edges detected in the
real image with the Marr Algorithm for a = 1.5). For each image, Algorithm 2
was applied for two different values of 59: 59 = w/512 and 59 = 7r/64.

For the real image, the mean value of the efficiency is relatively high for a
low value of 59—a processor has to calculate Eq. 4 a great number of times
in each processing stage. Table 2 and Fig. 8 show the decline of the efficiency
with the increase of the 59 value. The image of Fig. 7b was synthesised in order
to allow the observation of the behaviour of the processing efficiency in a very

■839-

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig. 7. 512 x 512 binary images used for the Hough transform: a) a synthesised image
(binary); b) the edge detected for a real image (Marr algorithm).

Image segmentation-Edge detection Marr Algorithm (11 x 11) (MA); Hough Transform (HT)

512 x 512
Images 69

execution time (ms)

(%)
a(ST)

(%) lPr. APr. 8Pr. 16-PT-. 32Pr.
MA HT MA HT MA HT MA HT MA HT MA HT MA HT

real
fig. 7b)

7I-/512 13990 7841 3501 2483 1754 1311 883 720 445 402 99,2 70.7 1.7
1.7

6.8
15.9 TT/64 13990 1063 3501 406 1754 250 883 178 445 142 99.2 44.8

synthetic
fig. 7a)

7T/512 - 546 - 235 - 164 - 135 - 122 - 34.7
-

16.7
9.9 TT/64 - 151 - 124 - 107 - 106 - 107 - 15.3

Table 2. Performance of the OMP system for the image segmentation task using
Hough transform.

5G=TC/64_

59=TC/512

16
Processors

32

-♦— 50=7c/64 (tot.)

-■— 89=71/512 (tot.)

16
Processors

32

59=rc/64

56=TC/512

(a) (b)

Fig. 8. Processing efficiency for image segmentation (edge detection plus Hough trans-
form: a) for the real image; b) for the synthetic image.

■840-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

adverse situation. The number of supposed edges is quite small which implies a
small processing load when compared to the communication requirements. The
mean value of the processing efficiency decreases to approximately half the value
obtained for the real image. The decrease of the processing efficiency with the
number of processors is also greater than the observed for real images.

5 Conclusions

A method for mapping nonlocal image processing tasks onto OMP systems, us-
ing image parallelism, is presented in this paper. No a priori knowledge about
information exchange requirements is needed. The processing is modelled by a
sequence of processing and communication stages. The information is orthogo-
nally transfered or broadcasted during the communication stages in parallel by
the multiple processors. The processing is synchronised at the begin and at the
end of the stages by implementing synchronisation barriers.

The effectiveness of the method is shown by the development and analysis of
parallel algorithms for typical nonlocal image processing, namely for the image
rotation and the Hough transform tasks. The analysis of the complexity of the
algorithms demonstrates that the processing efficiency achieved is 100%.

The performance of an OMP image processing system is evaluated based on
simulation results. The times for the proposed nonlocal image processing parallel
algorithms, show that the system can have a good performance if the following
aspects are considered: i) a fair division of the processing in a stage is almost
achieved by distributing equally sized sub-images among the processors—which
also means among the memory modules; it) the number of pixels processed in
each step must be big enough, in order to reduce the communication time weight
in the total processing time; Hi) the responsibility of transferring the information
in a step should be divided by the multiple processors uniformly.

References

1. Dana H. Ballard and Cristopher M. Brown. Computer Vision. Prentice-Hall,
Londres, 1982.

2. D. Ben-Tzvi, A. Naqvi, and M. Sandier. Synchronous multiprocessor implementa-
tion of the Hough transform. Computer Vision, Graphics, and Image Processing,
52:437-446, 1990.

3. Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision, volume I.
Addison-Wesley, 1992.

4. K. Hwang and D. Kumar Panda. Parallel Architectures and Algorithms for Image
Understanding, chapter The USC Orthogonal Multiprocessor for Image Under-
standing, pages 59-94. Academic Press, 1991.

5. Kai Hwang, Ping-Sheng Tseng, and Dongseung Kim. An orthogonal multiprocessor
for parallel scientific computations. IEEE Transactions on Computers, 38(1):47-
61, January 1989.

6. J. Illingworth and J. Kittler. A survey of the Hough transform. Computer Vision,
Graphics, and Image Processing, 44:87-116, 1988.

FEUP - Faciddade de Engenhaha da Universidade do Porto

7. Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing, volume 2 of
Computer Science and Applied Mathematics. Academic Press, Londres, segunda
edition, 1982.

8. Isaac D. Scherson and Yiming Ma. Analysis and applications of the orthogonal
access multiprocessor. Journal of Parallel and Distributed Computing, 7(2):232-
255, October 1989.

9. Leonel Sousa, Jose Caeiro, and Moises Piedade. An advanced architecture for
image processing and analysis. In IEEE International Symposium on Circuits
and Systems, volume 1, pages 77-80. IEEE Singapore Section, The Institute of
Electrical and Electronics Engineers, May 1991.

10. Leonel Sousa and Moises Piedade. Simulation of SIMD and MIMD shared mem-
ory architectures on UNIX based systems. In IEEE International Symposium on
Circuits and Systems, pages 637-640, California, May 1992. IEEE Circuits and
Systems Society.

11. Leonel A. Sousa and Moises Piedade. Parallel Algorithms for Digital Image Pro-
cessing, Computer Vision and Neural Networks, chapter Low Level Parallel Image
Processing. WILEY Series in Parallel Computing. John Wiley k Sons, 1993.

12. Leonel Augusto Sousa. Parallel Image Processors with Orthogonal Access to Shared
Memory. PhD thesis, Instituto Superior Tecnico, Lisboa, 1996. (only available in
the Portuguese language).

13. Texas Instruments. TMS320C40x User's Guide, 1994.
14. S. Yalamanchili and J. K. Aggarwal. Analysis of a model for parallel image pro-

cessing. Pattern Recognition, 18(1):1-16, 1985.

■842-

VEC PAR '2000 - 4th International Meeting on Vector and Parallel Processing

Reconfigurable Mesh Algorithm for
Enhanced Median Filter

Byeong-Moon Jeon, Kyu-Yeol Chae, and Chang-Sung Jeong*

Department of Electronics Engineering, Korea University,
Anamdong 5-ka, Sungbuk-ku, Seoul 136-701, Korea

jbmQsnoopy.korea.ac.kr, csjeongQchalie.korea.ac.kr

Abstract. In this paper, we derive an enhanced 2-D median filter with
adaptive size which can offer a more desirable combination of impulse
noise suppression and detail preservation properties. The median filter is
developed by applying an enhanced one-dimensional length-decision rule
for horizontal, vertical, and two diagonal directions. Then, we present an
optimal parallel algorithm for the enhanced median filter on the recon-
figurable mesh and prove that the RMESH algorithm is done in 0(w)
time on N x N RMESH and this complexity is optimal when the size of
an image is N x N and the filter size is w x w.

1 Introduction

Application of median filter to an image requires some cautions because median
filtering tends to remove image details such as thin lines and sharp corners
while suppressing noise. In response to these difficulties, several variations of
median filters have been proposed[l]-[4]. Generally speaking, the preservation
of signal features and the elimination of noise are two contradictory aspects in
signal or image processing. The conceivable solution is to vary the size of median
filter according to the distribution of impulse noise. This idea can settle the
problem which often exhibits blurring for large window size or insufficient noise
suppression for small window size. According to this theory, Lin[5] proposed the
algorithm based on impulse noise detection employing adaptive-length median
filters when images are corrupted by impulse noise. Unfortunately, Lin's filter
contains the inherent drawbacks. In this paper, we derive an enhanced one-
dimensional length-decision rule as well as an enhanced 2-D median filter with
adaptive size, and shall show that they can solve the problems inherent in Lin's
filter and provide a more desirable combination of impulse noise suppression and
detail preservation properties. From the experimental results, we show that our
median filter can achieve the best image quality among all filters considered.

So far, a lot of multiprocessor architectures have been proposed for paral-
lel processing. Of these, a very attractive interconnection model is the two-
dimensional mesh connected computer. However, since mesh is a natural and
realistic parallel architecture for efficient solution of many problems but solution

* This research is supported by the Brain Korea 21 Project.

•843-

FEUP - Faculdade de Engenharia da Universidade do Porto

times are constrained by long data movements, researchers have studied spe-
cial architectures whose bus system can be dynamically changed to improve the
communication efficiency. If the bus system can be dynamically changed under
program control, it is referred to as reconfigurable. Several different reconfigurable
mesh (RMESH) architectures have been proposed in the literature. These include
the polymorphic-torus[6][7], the mesh with reconfigurable buses (MRB)[8], the
processor array with a reconfigurable bus system (PARBUS)[9][10], the reconfig-
urable network (RN)[11][12], and the mesh restriction of reconfigurable network
(MRN) [11] [13]. Conceptually, these reconfigurable architectures are functionally
equivalent. We present a parallel algorithm for the enhanced median filter on the
reconfigurable mesh. Besides, we prove that the RMESH algorithm is done in
0{w) time on N x N RMESH and this complexity is optimal when the size of
an image is N x N and the filter size is w x w.

The organization of this paper is as follows. In Section 2, we briefly review the
problems of Lin's filter and derive the enhanced one-dimensional length-decision
rule and the enhanced 2-D median filter with adaptive size. The performance
of our median filter is evaluated and compared with other filters' by applying
the proposed method to test images. In Section 3, we provide some preliminaries
related to our parallel algorithm, and present the RMESH algorithm for the
enhanced median filter. Finally, in Section 4, we give concluding remarks.

2 Enhanced Median Filter

Let us consider 1-D adaptive-length median filter. If the length of 1-D window
varies adaptively according to the width of impulse noise, the median filter will
eliminate noise efficiently while preserving more signal features.

Property 1. When the maximum length of 1-D window is w, the median filter
with window length 2K + 1 should be applied to remove impulse noise of width
AM<tf<[fJ.

For removing impulse noise in two-dimensional images, 2-D adaptive median
filter can be obtained from expanding 1-D adaptive median filter. Since edge
preservation is essential in image processing, it is important to take into account
structural information of the image. In this paper, we assume that horizontal,
vertical, and two diagonal (45-degree and 135-degree) lines in the window are
to be preserved. Thus, such a modification of 2-D median filter leads to 1-D
median filters used in four directions.

Property 2. 2-D median filter with adaptive size is derived by expanding 1-
D median filter with adaptive length for horizontal, vertical, and two diagonal
(45-degree and 135-degree) directions.

■844-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

2.1 Lin's Filter

Based on Property 1 and 2, Lin proposed the adaptive window-size median
filter to suppress noise effectively and at the same time preserve image details[5].
However, his median filtering algorithm has several problems awaiting solution,
where the maximum window size is 5 x 5.

The first problem of Lin's filter is that the window length determined from
the width of mixed impulse noise (positive and negative impulse noise) does not
correspond to the desirable length conduced from Property 1. If the pixels inside
1-D window are denoted as x(n -2),x(n - l),x(n),x(n + 1), and x(n + 2), Lin
defined the difference between neighboring pixels as follows,

Pi = x(n + i - 1) - x(n + i) for i = l,2

Pi = x(n + i + 1) - x(n + i) for 2 = -1,-2

And Lin discriminated strictly between positive and negative impulse noise by
signs of j>i's. When the pixels within a window are corrupted by both positive and
negative impulse noise, one must first apply the algorithm for positive impulse
noise and then apply the algorithm for negative impulse noise. This process has
a weakness requiring a lot of time. Besides, though the one-dimensional length-
decision algorithm can remove mixed impulse noise, it violates Property 1. For
instance, Fig. 1 shows the mixed impulse noise of width 2. Since p_2 > 0, p_i <
0, and p\ < 0, Lin's algorithm allows the window length 3. However, in fact, the
desirable window length is 5 because the mixed impulse noise has width 2.

I 1 8 1 I

Fig. 1. Mixed impulse noise of width 2 (p: positive impulse noise, n : negative impulse
noise)

The second problem is that the condition related to the impulse noise of
width 1 is not proper. That is, Lin proposed that the following condition could
detect impulse noise of width 1 and the window length would be three.

Pi>T and p_i > T

where T is a threshold value. However, this condition includes the case that the
current pixel x(n) is misjudged as positive impulse noise, though x{n) is not
corrupted noise. As shown in Fig. 2, when x(n) is original and x(n — 1) and
x(n + 1) are negative impulse noise, the above condition is satisfied. Thus, the
condition has a problem which can distort the attribute of x(n).

■845-

FEUP - Faculdade de Engenharia da Universidade do Port

I ; ! : I

Fig. 2. Case that the center pixel is not corrupted by noise (n : negative impulse noise,
o : original pixel)

Finally, in the 2-D adaptive median filtering algorithm, the maximum length
in two diagonal directions is limited to three. This causes that the abilities of
noise suppression and preserving image details are decreased in two diagonal
directions.

2.2 Enhanced 2-D Median Filter with Adaptive Size

In order to easily derive the enhanced one-dimensional length-decision rule, we
limit the maximum length of 1-D adaptive median filter to 5 in the rest of
the paper. Naturally, the maximum size of 2-D adaptive median filter is 5 x 5.
According to Property 1, we can suppress impulse noise whose maximum width
is 2. Positive or negative impulse noise is defined as a pixel which is larger or
smaller than both neighbors by T, where T is a threshold value and we determine
it as 45. And the difference between neighboring pixels is defined as follows.

diff(i) = \x(n + i-l)-x(n + i)\ for 2 = 1,2

diff(i) = \x(n + i + l)-x(n + i)\ for i = —1,-2

At first, to overcome the first problem of Lin's filter, we use new threshold
values, Tmin and Tmax, that detect the width of mixed impulse noise exactly,
where Tmin is used to decide if the center pixel and its neighbor are impulse
noise of the same types and Tmax is used to decide if they are impulse noise of
different types.

Theorem 1. Impulse noise of width 2 can be suppressed by the median filter
with window length 5 if either of the following conditions is satisfied.

diff (I) > T and {diff {-I) < Tmin or diff(-l) > Tmax)

and diff (-2) > T (1)

or
diff {-I) > T and {diff {I) < Tmin or diff {I) > Tmax)

and diff(2) > T (2)

Fig. 3 (a)-(h) show the cases that the width of impulse noise is 2. Among them,
(a)-(d) show that x(n - 1) and x(n) are impulse noise, and condition (1) can be

■846-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

P P

IlllI ma 11
(a)

P P

(b)

JlULJlal
(e) (£)

I

JILILJH1
(0 Ü)

(m) (n)

P P * *

(k)
P P
« 4

o

(c) (d)

ükL JUlL
(g) (M

p

lWJ--tt k
0)

(o) (p)

Fig. 3. The mixed impulse noise in 1-Dimensional window length 5 (p : positive impulse
noise, n : negative impulse noise, o : original pixel)

applied in these cases. If there is little difference between x(n — 1) and x(n), that
is, x(n — 1) and x(n) are impulse noise of the same types, diff(-l) < Tmi„ is

satisfied. If there is a wide difference between x(n-l) and x(n), diff(-l) > Tmax

is satisfied, and this means that x(n — 1) and x(n) are impulse noise of different

types (see Fig. 3 (c) and (d)). And dif}{\) > T or diff(-2) > T is used to define

the boundary between x(n) and x(n + 1) or between x(n — 2) and x(n — 1). As
for the threshold values Tmjn and Tmax, we tried experimentally various values

and obtained 5 and 100, respectively. In a manner similar to condition (1), it is
easy to derive condition (2) from Fig. 3(e)-(h).

The second problem of Lin's filter can cause to destroy the original pixel. To

avoid the problem, we consider a new condition.

Theorem 2. Impulse noise of width 1 can be suppressed by the median filter
with window length 3 if either of the following conditions is satisfied.

diff{\) > T and diff(-l) > T and {diff{-2) < T or diff(2) < T) (3)

or

((diff(-l) < T and diff(l) > T) or (diff(-l) > T and diff{l) < T))

•847-

FEUP - Faculdade de Engenharia da Universidade do Porto

diff(l) > T and diff(-l) > T of condition (3) guarantees that the attribute
of center pixel x(n) is different from those of its neighbors x(n + 1) and x(n - 1).
Similarly. diff(-2) < T or diff{2) < T guarantees that the attributes of
x(n - 2) and x(n - 1) are the same or those of x(n + 1) and x(n + 2) are the
same. At this point, we need to pay attention to the fact that logical operation
or is used. This means that if condition (3) is satisfied, the group composed of
x(n - 2) and x(n - 1) or the group composed of x(n + 1) and x(n + 2) must have
the same attribute and x{n) must be different from one of two groups. Thus, Fig.
3 (i)-(n) satisfy condition (3) but (o) and (p) do not satisfy. For the condition
(4), {diff(-l) < T and diff(l) > T) or (diff(-l) > T and diff(l) < T)
shows that the current pixel is located at the boundary between two regions.
And di

l//,_l) is used for detecting impulse noise with low amplitude.
If the current pixel is original, it is natural that the pixel is not filtered. So

we need to examine whether or not the current pixel is impulse noise.

Theorem 3. The center pixel of window is not filtered if the following condition
is satisfied.

diff{-2) < T and diff{~\) < T and diff(l) < T and diff(2) < T (5)

Since an image consists of many features which are very valuable for human
vision, we need to preserve important image features. According to Property 2,
our 2-D median filter adapts the window size by applying the enhanced one-
dimensional length-decision rule (i.e., conditions (l)-(5)) for four directions.
As mentioned above, Lin's filter has the problem that the maximum length in
two diagonal directions is limited to 3 when the maximum size of 2-D window is
5 x 5. In our 2-D adaptive median filtering algorithm, the same maximum length
■5 is used for each direction. This can produce the more improved performance
than Lin's filter. The current pixel satisfying condition (5) in one direction must
not be filtered for the other directions in our algorithm, because it is not noise
and hence must not be changed. However, since condition (5) is the necessary
condition for the fact that the current pixel becomes original, there is some cases
that the current pixel does not satisfy condition (5) even if it is original. Such
the pixel also satisfies neither of condition (3) and (4). In these cases, we do not
decide in current direction whether or not the center pixel is noise and examine
it in another directions. Our 2-D adaptive median filter with 5x5 window is
described as follows.

Algorithm Enhanced_Median_Filter
Input : An image with mixed impulse noise
Output: A noise-removed image
Step 1. Do the following for each direction : horizontal, vertical, 45-degree, and

135-degree directions
(1.1) If either condition (1) or (2) is satisfied, decide window length 5 and

go to Step 1.
(1.2) If either condition (3) or (4) is satisfied, decide window length 3 and

go to Step 1.

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

(1.3) If condition (5) is satisfied, the center pixel remains unchanged and
go to Step 3.

(1.4) If none of above conditions is satisfied, decide window length 1 and
go to Step 1.

Step 2. Sort data samples according to the adaptive lengths of four directions
and replace current pixel with median value.

Step 3. Move 5x5 window to next pixel for successive filtering.

2.3 Experimental Results

In this subsection, the algorithm Enhanced.Mediari-Filter is evaluated by ap-
plying it to noisy images and compared with other existing noise removal tech-
niques. In order to compare the performance of our 2-D adaptive median filter
with those of other filters[l][2][3][4][5], we apply these filters to the images cor-
rupted by impulse noise. And we compare their efficiency in noise suppression
and detail-preserving characteristics by SNR value. Two 512 x 512 test images,
'Lena' and 'San Francisco', are degraded by only impulse noise with probability
of an impulse occurring, p = 0.1 and p = 0.05.

Table 1. Comparative results in SNR for various probabilities of impulse noise

Filter Type (5x5) Lena San Francisco
p = 0.1 p = 0.05 p = 0.1 p = 0.05

Median filter 32.32 dB 32.55 dB 25.81 dB 25.86 dB
Recursive median filter[l] 34.06 dB 34.59 dB 26.53 dB 26.63 dB
CWM filter[2] 34.84 dB 36.91 dB 29.58 dB 30.24 dB
ACWM filter[3] 36.05 dB 37.29 dB 28.44 dB 31.58 dB
Optimal stack filter[4] 33.22 dB 33.60 dB 26.07 dB 26.15 dB
Lin's filter[5] 38.32 dB 41.05 dB 30.88 dB 32.48 dB
Our median filter 39.40 dB 42.39 dB 31.83 dB 34.24 dB

Table 1 lists the SNR values of the filtered images. In this table, the optimal
stack filter is originally designed under the certain structural constraints [4]. That
is, we adopted the same structural constraints as our 2-D adaptive median fil-
ter. The performance of Lin's filter shows higher comparing to the conventional
filtering methods. However, due to the problems indicated in this section, the
performance of it is worse than our median filter with adaptive size. As expected,
our median filter provides better performance than the other filters in removing
impulse noise.

3 Parallel Algorithm on Reconfigurable Mesh

The reconfiguration mesh architecture used in this paper is based on the archi-
tecture MRN defined in [11] [13]. Nx x N2 RMESH consists of an JVi x N2 array of

849-

FEUP - Faculdade de Engenharia da Universidade do Porto

processing elements (PEs) which are connected to a grid-shaped reconfigurable
bus system as shown in Fig. 4 (a). As usual, it is assumed that every proces-
sor knows its own coordinates. And PE(i,j) is connected to its four neighbors
PE(i - 1, j), PE(i + 1, j), PE(i,j - 1), and PE(i, j + 1), provided they exist.
Every processor has four ports denoted by N (North), S (South). E (East), and
W (West). Internal connection among four ports of a processor can be config-
ured during the execution of algorithms. We use the notation {g} to represent
the local connections within a processor, where g denotes a group of ports that
are connected together within the processor. For example, {SW, NE} represents
the configuration in which S port is connected to W port while N port is con-
nected to E port. Our computation model allows at most two connections to be
set in each processor at any one time. Furthermore, these two connections must
involve disjoint pairs of ports as illustrated in Fig. 4 (b). Therefore, the number
of possible connection patterns in each processor is 10. In a single unit of time,
each processor can perform basic arithmetic and logic operations on its own data
and can connect or disconnect its local connections among four ports.

0 12 3

|HW) INE] {WS\ 1ES} (NSI (U^|

*VE ^ %P ^
S (NW.3EJ (SW,NE| {NS.EW}

(b)

Fig. 4. 4 x 4 RMESH and its connection patterns

Note that by setting the local connections properly, processors that are at-
tached to the same subbus can communicate with one another by broadcasting
values on the common subbus. The RMESH model of this paper allows several
processors to read the same bus component; however, it does not allow more
than one processor to write on the same bus component at the same time, i.e.,
a concurrent-read exclusive-write model. If no value is being transmitted on
the subbus, the read operation has no result. It is assumed that communica-
tions along buses take 0(1) time. Although inexact, recent experiments with the
YUPPIE[6][7] and the PPA[14][15] reconfigurable multiprocessor systems seem
to indicate that this approximation is a reasonable working hypothesis.

3.1 Basic Operations

The purpose of this subsection is to provide several procedures for the reconfig
urable mesh that will be used in the design of our RMESH algorithm.

850-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

We assume that PE(i, j) initially holds a value I(i,j), 0 < i,j < N - 1. Each
PE is required to accumulate s items of / value in its array .4 as specified

A[q](iJ) = I(i,(j-[\\+q)modN)

where |_§J < j < N - LfJ and 0 < q < s. In this operation, we do not apply
accumulate operation in the border of RMESH within the range of Lf J length.
The procedure for this is as follows.

Procedure Accumulate].(A, s, I)
for k := 0 to LfJ do

for all i, j (0 < i,j < N - 1) in parallel
1) PE(i,j) connects ports E and W;
2) PE(i,j) disconnects the horizontal bus if j mod (LfJ + 1) = k;
3) PE(i, j) broadcasts I(i,j) through E port and A[(k + (Lf J + 1) -

(j mod (LfJ + 1))) mod (LfJ + 1)](M) := I(i,j) if j mod ([fj +
1) = (k + 1) mod (LfJ + 1);

4) PE(i,j) receives the value from W port and stores it into A[(k +
(LfJ + 1) - U mod (LfJ + 1))) mod (LfJ + 1)](M);

5) PE(i,j) broadcasts I(i,j) through W port if j mod (LfJ +1) = (k —
1) mod (LfJ + 1);

6) PE(i,j) receives the value from E port and stores it into A[((k —
1) mod (LfJ + 1) + (LfJ + 1) - (j mod (LfJ + 1))) mod (LfJ + 1) +
LtJKU);

endfor;
endfor;

An illustration of how this procedure works is provided in Fig. 5, where the size
of RMESH is 8 x 8 and s = 5. Based on this figure, we can easily see that the
procedure Accumulatel(A, s, I) correctly accumulates s items of i" value in O(s)
time on any row of N x N RMESH. On the other hand, the following operation
can be done in a similar way of the procedure Accumulatel(A, s, I).

A[q)(i,j) = m-[^\+q)modN,j)

where LfJ < i < N — LfJ and 0 < q < s. As we can see, there is no difference
between two operations except the direction along which the values are accu-
mulated. Therefore, an O(s) procedure for this operation can be derived by just
adjusting the internal connection among four ports of each PE.

Procedure Accumulate2(.4, s,I)
for k := 0 to LfJ do

for alH, j (0 < i, j < N — 1) in parallel
1) PE(i, j) connects ports N and S;
2) PE(i,j) disconnects the vertical bus if i mod (LfJ +1) = k;
3) PE(i, j) broadcasts I(i,j) through S port and A[(k + (Lf J + 1) -

(i mod (LfJ + 1))) mod (LfJ + 1)](M) := I(i,j) if i mod (LfJ +
1) = (k + 1) mod (LfJ +1);

-85! -

FEUP - Faculdade de Engenharia da Universidade do Porto

Initial

k = 0

0 12 3 4 5 6 7

4,2]'iim=i1 40]= 1^2]=% 4i]=/4J[p] = ;4

ATI - h 41] = h 4>0] = jj 42]=J5 41]= ;3 40] = 's

44] 4343] = /3 44] =1„ 43] = /«

k = 2

42]'=/04i]'=;cl40]'= /„ 42].'r34iT=;3y!|pI=/3 42]2 /„ 41^ j6

>$FT~* 44]=?,43]=/4 * 44] = /?43] = /7 '

Fig. 5. Example of Accumulatel(A, s, I)

4) PE(i,j) receives the value from N port and stores it into A[(fc+(|_§J +
1) - (i mod (LfJ + 1))) mod (LfJ + l)](i,j);

5) PE(i, j) broadcasts I{i,j) through N port if i mod (LfJ +1) = (k —
1) mod (LfJ+1);

6) PE(i,j) receives the value from S port and stores it into A[((k -
1) mod (LfJ + 1) + (LfJ + 1) - (i mod (LfJ + 1)))
mod (LfJ +1) + Lfj](i,i);

endfor;
endfor;

Next, we show how to accumulate s items of / value along two diagonal directions
of RMESH. These operations are defined as follows.

A[q](i,j) = I((i - LfJ + q) mod N, (j - LfJ + q) mod N)

A[q](i,j) = I((i - LfJ + q) mod N, (j + LfJ + q) mod N)

where LfJ < i,j < N - LfJ and 0 < q < s. They involve establishing a num-
ber of subbuses and broadcasting values along them. The details of these op-
erations are spelled out in the following procedures, Accumulate3(A, s, I) and
Accumulate4(A, s, I).

■852-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Procedure Accumulate3(A, s,I)
for k := 0 to LfJ do

for all i,j (0 <i,j < N - 1) in parallel
1) PE(iJ) establishes the local connection {WS, NE};
2) PE(i, j) disconnects ports W and S if i mod (LfJ +1) = k;
3) PE(z',j) broadcasts I(i,j) through S port and" A[(k + (LfJ + 1) -

(i mod (LfJ + 1))) mod (LfJ + l)](i,j) := I(i,j) if i mod QfJ +
1) = (Ä + 1) mod (LfJ +1);

4) PE(i,_;) receives the value from W port and stores it into A[(k +
(LfJ + 1) - (i mod (LfJ + 1))) mod (LfJ + l))(i,j);

5) PE(i',j) broadcasts I(i,j) through N port if i mod (LfJ + I) — k;
6) PE(i,j) receives the value from E port and stores it into A[((k —

1) mod (LfJ + 1) + (LfJ + 1) - (» mod (LfJ + 1)))
mod (LfJ + I) + L!J](M);

endfor;
endfor;

Procedure Accumulate4(A,s,7)
for A; := 0 to LfJ do

for all i,j (0 <i,j<N — 1) in parallel
1) PE(i,j) establishes the local connection {NW, ES};
2) PE(i,j) disconnects ports E and S if i mod (LfJ + 1) = k;
3) PE(i,j) broadcasts I(i,j) through S port and A[(k + (LfJ + 1) -

(i mod (LfJ + 1))) mod (LfJ + l)](i,j) := I(i,j) if i mod (LfJ +
1) = (A+l) mod (LfJ +1);

4) PE(i, j) receives the value from E port and stores it into A[(k+ (Lf J +
1) - (i mod (LfJ + 1))) mod (LfJ + l)](i,j);

5) PE(i,j) broadcasts I(i,j) through N port if i mod (LfJ + 1) = k;
6) PE(i, j) receives the value from W port and stores it into A[((k —

1) mod (LfJ + 1) + (LfJ + 1) - (i mod (LfJ + 1)))
mod (LfJ + i)+LfJ](M);

endfor;
endfor;

Similarly, Accumulate^A, s, I) and Accumulate^A, s, I) correctly accumulate
s items of / value in O(s) times on N x N RMESH.

Given a sequence A of n elements and an integer k, where A = {ai,ao, ■ ■ ■ ,an}
and 1 < k < n, it is required to determine the kth smallest element in A. This is
known as the selection problem. Selection(A, k) can be performed in 0(n) time
on a single processor.

3.2 Parallel Enhanced Median Filter

In this subsection, we present the RMESH algorithm for the enhanced 2-D
median filter with adaptive size. Let 1(0...N - 1,0...N - 1) be an iV* x N image
with I(i,j) being the gray value of the pixel (i,j). We assume that initially,

■853-

FEUP - Faculdade de Engenharia da Universidade do Porto

N x A' image is mapped on the RMESH with N x A size such that PE(i, j)
holds I(i,j), and the window size is w x w.

Since our median filter adapts the window size by applying the enhanced
one-dimensional length-decision rule for horizontal, vertical, and two diagonal
directions, every processor must know all the image pixels of four directions
within the range of the window centered at it. Hence, every processor needs
to communicate with other processors along four directions which will be ob-
served in the window. Such communication can be achieved by using the pro-
cedures Accumulatel, Accumulate!, Accumulated, and Accumulated. At this
time, every processor PE(i, j) accumulates the data received from horizontal di-
rection into hor[0, l,---,w-l](i,j), the data received from vertical direction into
ver[0,1, • • •, w - l](i, j), and the data received from two diagonal directions into
diagl[0,1, • • •, w-l](i,j) and diag2[0,1, • • •, w-l](i,j), respectively. In addition,
while accumulating the image pixels, each processor simultaneously calculates
the difference between neighboring pixels. Our RMESH algorithm consists of the
following sequence of steps.

Parallel Algorithm Parallel_Enhanced_MedianJFilter
{horizontal direction}

Step 1. Every processor PE(i,j) accumulates the image pixels in horizontal
direction by calling the procedure Accumulatel(hor,w,I).

Step 2. Every processor PE(i, j) applies the enhanced one-dimensional length-
decision rule and decides the appropriate window length, //,or. And PE(i, j)
extracts the elements corresponding to lhor from the set hor which are can-
didates for being median value in Step 10 and includes them into the set
sample which is initially the null set.

{vertical direction}
Step 3. Every processor PE(i,j) accumulates the image pixels in vertical di-

rection by calling the procedure Accumulate2(ver,w,I).
Step 4. Every processor PE(i, j) applies the enhanced one-dimensional length-

decision rule and decides the appropriate window length, lver. And PE(i,j)
extracts the elements corresponding to lver from the set ver and includes
them into the set sample.

{45-degree diagonal direction}
Step 5. Every processor PE(i,j) accumulates the image pixels in 45-degree

diagonal direction by calling the procedure Accumulate3{diagl,w,I).
Step 6. Every processor PE(i,j) applies the enhanced one-dimensional length-

decision rule and decides the appropriate window length, Idiagi- And PE(i, j)
extracts the elements corresponding to Idiagi from the set diagl and includes
them into the set sample.

{135-degree diagonal direction}
Step 7. Every processor PE(z,j) accumulates the image pixels in 135-

degree diagonal direction by calling the procedure Accumulate4(diag2,w,I).
Step 8. Every processor PE(i, j) applies the enhanced one-dimensional length-

decision rule and decides the appropriate window length, ldiag2- And PE(i, j)
extracts the elements corresponding to ldiag2 from the set diagl and includes
them into the set sample.

■854-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

{median filtering with adaptive size}
Step 9. Every processor PE(i,j) calculates ltot = lhor + lver + ldiagl + ldiag2.
Step 10. Every processor PE(i,j) replaces I(i, j) with median value by calling

the procedure Selection (sample, [kf1]).

In the RMESH algorithm, we get the window length for each direction adap-
tively by applying our one-dimensional length-decision rule. According to each
window length, we obtain the elements at each direction that practically take
part in median operation and store them into the set sample that will be in-
put of the procedure Selection. Therefore, after Step 8 is done, every proces-
sor becomes to know the window lengths of four directions and the set sample.
Now, each processor must determine the median element in sample whose size is
hor + lver + ldiagi +tdiag2- This operation can be achieved by calling the procedure
Selection, where the procedure's inputs are sample and |" h^+ »»■+di«yi + d.»,^-^

Because each of the above steps can be implemented in 0(w) time, we have the
following theorem.

Theorem 4. When the size of an image is N x N and the window size is wxw,
the parallel algorithm for the enhanced 2-D median filter with adaptive size is
done in 0(w) time on N x TV RMESH.

Let Q(T(n)) be a lower bound on the number of sequential steps required
to solve a problem of size n. Then Q{T{ri)/N) is a lower bound on the running
time of any parallel algorithm that uses N processors to solve that problem.
According to Theorem 4, the running time of our algorithm is 0(w) and the
number of processors used is N x N. Therefore, the cost of the algorithm Paral-
leLEnhanced-Median-Filter is optimal since the lower bound on the number of
sequential steps is 0(N2w) for the median filter.

4 Conclusion

We have derived the enhanced 2-D median filter with adaptive size that can solve
the problems of Lin's filter and so remove impulse noise effectively in images.
The enhanced 2-D median filter is developed by applying our one-dimensional
length-decision rule for horizontal, vertical, and two diagonal directions. Our
experiments have shown that the proposed methods improve the performance
over a number of well-known techniques.

The parallel model with a fixed topology leads to an inevitable tradeoff be-
tween the need for low network diameter and the need to limit the number
of interprocessor communication links. One method for providing efficient and
flexible communication among the processors is based on the concept of network
reconfiguration. The most significant advantage of reconfigurable architecture is
the flexibility of forming special topologies dynamically as required by the prob-
lem. As a result, this can decrease the communication diameter and reduce the
bottleneck for designing efficient algorithm. In this paper, the RMESH parallel
algorithm has been presented for the enhanced 2-D median filter with adaptive

■855-

FEUP - Faculdade de Engenharia da Universidade do Porto

size. When the size of an image is N x N and the window size is w x w, our

RMESH algorithm is done in O(w) time on Ar x N RMESH. Specifically, we

have proven that our RMESH algorithm is optimal by comparing its cost with

the lower bound on the number of sequential operations.

References

1. G. Qiu, "An Improved Recursive Median Filtering Scheme for Image Processing,"
IEEE Trans. Image Processing, vol. 5, no. 4, pp. 646-648, 1996.

2. S. J. Ko and Y. H. Lee, "Center Weighted Median Filters and Their Applications
to Image Enhancement," IEEE Trans. Circuits and Systems, vol. 38, no. 9, pp.
984-993, 1991.

3. B. M. Jeon, K. Y. Chai, and C. S. Joeng, "ACWM(Adaptive Center Weighted
Median) Filters to Reduce Impulse Noise," Proc. 24th KISS(Korea Information
Science Society) Conf., pp. 142-145, 1997.

4. Lin Yin, "Stack Filter Design : A Structural Approach," IEEE Trans. Signal Pro-
cessing, vol. 43, no. 4, pp. 831-840, 1995.

5. Ho-Ming Lin, "Median Filters with Adaptive Length," IEEE Trans. Circuits and
Systems, vol. 35, no. 6, pp. 675-690, 1988.

6. H. Li and M. Maresca, "Polymorphic-Torus Network," IEEE Trans. Computers,
vol. 38, no. 9, pp. 1345-1351, 1989.

7. M. Maresca and H. Li, "Connection Autonomy in SIMD Computers : A VLSI
Implementation," J. Parallel Distrib. Computing, vol. 7, pp. 302-320, 1989.

8. R. Miller, V. K. P. Kumar, D. I. Resis and Q. F. Stout, "Parallel Computations
on Reconfigurable Meshes," IEEE Trans. Computers, vol. 42, no. 6, pp. 678-692,
1993.

9. B. F. Wang and G. H. Chen, "Constant Time Algorithms for the Transitive Closure
and Some Related Graph Problems on Processor Arrays with Reconfigurable Bus
Systems," IEEE Trans. Parallel and Distrib. Syst., vol. 1, no. 4, pp. 500-507, 1990.

10. S. S. Lin, "Constant-Time Algorithms for the Channel Assignment Problem on
Processor Arrays with Reconfigurable Bus Systems," IEEE Trans. CAD of Inte-
grated Circuits and Systems, vol. 13, no. 7, pp. 884-890, 1994.

11. Y. Ben-Asher, D. Peleg, and A. Schuster, "The Power of Reconfiguration," J.
Parallel Distrib. Computing, vol. 13, pp. 139-153, 1991.

12. J. W. Jang and V. K. Prasanna, "An Optimal Sorting Algorithm on Reconfigurable
Mesh," Proc. 6th Int. Parallel Processing Symposium, pp. 130-137, 1992.

13. J. W. Jang, C. H. Park, and V. K. Prasanna, "A Fast Algorithm for Computing
a Histogram on Reconfigurable Mesh," IEEE Trans. PAMI, vol. 17, no. 2, pp.
97-106, 1995.

14. M. Maresca, "Polymorphic Processor Arrays," IEEE Trans. Parallel and Distrib.
Syst., vol. 4, no. 5, pp. 490-506, 1993.

15. M. Maresca, H. Li, and P. Baglietto, "Hardware Support for Fast Reconfigurability
in Processor Arrays," Proc. Int. Conf. Parallel Processing, pp. 282-289, 1993.

■856-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Parallel Implementation of a Track Recognition
System Using Hough Transform

Augusto Cesar Heluy Dantas, Jose Manoel de Seixas, and
Felipe Maia Galväo Franga

COPPE/EE/UFRJ
C.P. 68504, Rio de Janeiro 21945-970, Brazil

augusto91ps.ufrj.br, seixasfllps.ufrj.br, felipe9cos.ufrj.br

Abstract. The reconstruction of tracks left by particles in a scintillating
fibre detector from a high energy collider experiment is discussed. The
track reconstruction algorithm is based on using the Hough transform,
and achieves an efficiency above 86%. The algorithm is implemented in
a 16-node parallel machine using two parallelism approaches in order to
speed up the application of the Hough transform, which is known from
its large computational cost.

1 Introduction

In modern high-energy particle collider experiments the trackers play an impor-
tant role. Their task is to reconstruct the tracks left in the detectors by reactions
resulting from particle beam collisions. This is a very important task, as it allows
the computation of the momentum of particles.

At CERN ([1]), the European Laboratory for Particle Physics, LEP {Large
Electron-Positron Collider) collides electrons and positrons at four detection
points, and the resulting reactionss are observed by a set of sub-detectors that
are placed around such collision points. In our case, we focus on the SFT (Scin-
tillating Fibre Tracker), a tracker that has been developed to operate at L3, one
of the four detectors present at LEP.

The structure of the SFT can be seen in Fig. 1. The SFT has two shells, placed
0.187 m and 0.314 m away from the collision axis. These shells are composed of
very thin scintillating fibres with 60 /zm of diameter, arranged in groups of 1000
fibres. Each shell has four sublayers of 2 mm: two of them (<f>\ and ifo) provide
the coordinates in the r<j> plane, and the other two (u and v) furnishes, through
stereo vision, the coordinates in the rz plane. One may note that the tracks are
only observed in such two small regions, which have a large gap between them.

As the resulting subparticles reach the tracker shells, fibres get excited, pro-
ducing light and transmiting it towards the light detectors, which convert light
into an electrical signal. The light detectors are image tubes made of silicon
chips, which have the task of recording the position at which the tracker was
reached by a particle. Fig. 2 illustrates this process. These pixelchips function
similar to CCDs (Charge Capacitor Devices).

-857-

FEUP - Faculdade de Engenharia da Universidade do Porto

SCcoil

§§§§§§§£§§§gg§S^^^^^^^^^^^^^^I§

IB v
/

SFT

beam pipe PSD
iib-

0.8

SMD

Ye r
0.4

-0.2

0.2 0m

azimuth (r,p) - plane

Fig. 1. rz-plane of SFT (top) and the arrangement of the scintilatting fibre shells
(bottom).

-858-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Pixelchip

active surface=32mm
16 x 64 = 1024 Pixel

64 columns x 63jim = 4 mm

Fig. 2. Recording the positions of interactions between particles and the tracker.

Data used in this work were generated by Monte Carlo simulation ([5]).
The software package PYTHIA 5.6/JETSET 7.3 ([2]) was used for generating
electron-positron collisions at LEP conditions, and the simulation of the SFT
structure was made by using the software GEANT 3.159 ([4]). The generated
events correspond to 2D images1 formed by pixels that are produced on the
tracker due to particle interactions with the detector. A typical event to be re-
constructed is shown in Fig. 3. Tracks consist of helices, totally described by their
two parameters: curvature K and angle 6. Low energy tracks are removed from
the original image2, as they do not represent tracks of interest of the envisaged
physics.

In this paper we propose to use the Hough transform ([3]) to reconstruct
the tracks of the SFT. The Hough transform is known to be a powerful tech-
nique for track reconstruction, although its application is limited by its highly
intensive computational requirements. Therefore, envisaging to speed up the re-
construction procedure, we exploit the parallelism in the Hough transform and
implement the track reconstruction algorithm on a 16-node parallel machine.

In the following two sections, the fundaments of the Hough Transform and the
main features of the parallel machine (TN-310 system) are presented. Section
4 details the parallelization techniques developed and the achieved results in
terms of speed-up and track reconstruction efficiency. Finally, some conclusions
are derived in Section 5.

1 The third coordinate (z) is considered to be zero for the tracks we have.
2 This filtering process is a kind of preprocessing and is not a task of the reconstruction

algorithm.

■859-

FEUP - Faculdade de Engenharia da Universidade do Porto

- . -

/'

•\ x J
1

\ \

V

-x

1 $
t

-

i i i i

•

-

-30 -20 10 20 30 40

-

i i / ■■ —i 1 I ' /\ ' ^
30

20

10

-

0

P

10

20

30

i] i

-

T ,
-20 -10

Fig. 3. A typical event: pixels (top) and the corresponding target tracks (bottom)

860-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

2 The Hough Transform (HT)

The Hough Transform was introduced by Paul V. C. Hough in 1962 ([3]). The
initial idea was to use it in the detection of complex patterns in binary images.
The method has encountered a significant resistance to its adoption due to its
enormous computational cost. As substantial improvements with respect to its
implementation have been made in the last years, the Hough transform finds
applications nowadays in many image reconstruction problems.

2.1 The Standard Hough Transform (SHT)

The HT's main goal is to determine the values of the parameters that completely
define the original image shape. In order to achieve this goal, the input space is
mapped onto the parameter space and by histogramming the resulting mapped
points the parameter values are determined. In other words, a global detection
problem (in the input space) is converted into a local one (in the parameter
space).

As an example, let's consider the problem of detecting straight lines in a
noisy environment. Using the slope m and the offset c as the parameters for the
straight lines, the model is obtained from these two parameters (where the hat
indicates the estimate of a parameter):

y = rhx + c (1)

From this equation, a relation / can be derived as:

f{(m,c),(x,y))=y-rhx-c = 0 (2)

This relation maps each possible combination of parameter values (m, c) onto
a set (x,y) of the input space, that is, the parameter space is mapped onto
original input data space. From this, an inverse relation, say g, can be defined,
so that it maps the input space onto the parameter space. This the so called
backprojection:

g((x,y),(m,c)) = y-xm-c = 0 (3)

For the straight line problem, relation g results in:

c = —xm + y (4)

After having backprojected the input space onto the parameter space, we
search for the regions in the parameter space for which the "density of lines"
is high, that is, we search for values of (m,c) that have large probability in
representing an actual straight line from the input space. This search is per-
formed by building an accumulator over the parameter space, which performs
data histogramming. As an example, consider an input space as shown in Fig.
4, where four lines have to be detected from their pixels, in spite of the noisy

861

FEUP - Faculdade de Engenharia da Universidade do Porto

pixels. Performing the corresponding backprojection, the histogram in the pa-
rameter space is obtained as shown, where the values for m and c corresponding
to each straight line can be estimated from the four clear peaks observed in the
parameter space.

15

10 _. '•/*.. ' .•■*!•■**'

5

^ 0 '>;;:;<;! '

-5
- ..■•';'■-'" . ''':>-. •

-10

-15 u*
. i i ' , • *, •

15 20

angular coefficient linear coefficient

Fig. 4. Four straight lines to be detected in a noisy image (top) and the corresponding
histogram in the parameter space (bottom).

The accuracy in the estimation of the curve parameters depends on the gran-
ularity of the accumulator. As higher granularity (higher number of channels in
the histogram) in the accumulator produces better accuracy, the estimation of
the actual parameters improves with finer granularity. Thus, the computational
cost for the SHT is usually very high.

The SHT can be easily extended for arbitrary shapes. Relations / and g are
simply generalized to:

-862-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

f((äi,ä-2,...,än),(x,y)) = 0 (5)

g((x,y),(a1,a2,...1an)) = 0 (6)

For the track reconstruction problem, we search for peaks in the K9 parameter
space in order to detect helices in the input space.

2.2 The Local Hough Transform (LHT)

The Local Hough Transform [6] aims at reducing the number of operations re-
quired to accumulate the HT. Instead of backprojecting each point from the
input space onto an entire curve in the parameter space, the LHT maps each
pair {(xi,yi),(x2,y2)} of pixels from the input space onto its unique correspon-
dent point (ai, ao) in the parameter space. For the straight line case, this requires
to solve the pair of equations below:

t/i = mil + c (7)

2/2 = 7BZ2 + c (8)

Of course, if there are n parameters to be determined, a set of n equations
shall be solved. The LHT reduces drastically the number of calculations neces-
sary for histogramming the parameter space, as it does not require a scanning
process. Although its restrictions for some problems, the LHT is well suited for
track reconstruction problem because data are concentrated in two small (lo-
cal) regions of the input space. Indeed, we do not perform every combination of
pixels, but pairs are only formed from pixels belonging to different shells and
whose 4> (polar) coordinates do not differ too much, as very curly tracks are not
expected from the physics of the experiment.

3 The TN-310 System

The TN-310 system ([7]) is a MIMD parallel computer with distributed memory.
It houses 16 nodes that comply with the HTRAM (High performance TRAns-
puter Modules) standard, equally split into two cards. Each node can commu-
nicate to any other node by sending messages through a fast interconnection
network based on STC104 chips ([8]).

Each HTRAM node contains a transputer (InMOS T9000), 8 MB of RAM
memory, a DSP (ADSP-21020) and a buffer of 256 KB for communication be-
tween the transputer and the DSP. The transputers are very good processors for
communication tasks, due to its VCPs (Virtual Channel Processors), and the
DSPs are optimized for signal processing applications. Fig. 5 shows the general
architecture of the machine, including the interconnection network.

Note that there are different numbers of switches involved in the communica-
tion of different HTRAM nodes. Therefore, to achieve faster speeds, an optimum

863-

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig. 5. Interconnection network for TN-310 system.

placement of processes into nodes must be realized. A PC running Windows hosts
the system.

Programming for the TN-310 system involves both describing the system
configuration and coding the tasks to be run on each processing node. In terms
of system configuration, the number of processors to be used must be informed to
the system, and the way they will communicate must also be clearly established
and configured. These features are described in an extra configuration file.

The TN-310 system provides three layers of programming: PVM (Parallel
Virtual Machine), RuBIS (microkernel), and C-Toolset, which was chosen for
this work due to its faster execution time. This environment allows processes
to be coded in ANSI C language. Some libraries were developped to include
communication functions and procedures.

Fig. 6 illustrates the general process of generating a single executable file in
C-Toolset from configuration and process codings. A makefile has to be written
in order to hold compilation and linking correctly. The internal structure of the
machine is kept in a file written in a specific language (NDL-Network Description
Language), and can not be changed by users.

4 Track Reconstruction

The tracking reconstruction algorithm based on the Hough transform was imple-
mented on the TN-310 system. Two different parallel approaches were developed
and compared with a sequential implementation in the same environment.

■864-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 6. Compilation and linking in C-Toolset environment.

4.1 The sequential algorithm

For the sequential implementation of the Hough transform, three main parts can
be distinguished: accumulation of the HT, elimination of peaks in the histograms
that may not represent real tracks and grouping of neighbor peaks that may
represent the same track3. After these phases, we can verify the efficiency of the
algorithm. Steps 2 and 3 can be viewed as a filtering process in the parameter
space, and these steps are quite important to avoid detecting ghost tracks.

Some parameters used in steps 2 and 3 must be optimized in order to achieve
the best efficiency. This was developed during a training phase. Three parame-
ters are the most important ones: two for determining neighboring regions and
the third for determining if a cell has a value high enough to represent a real
track. The algorithm was trained for reaching the optimum values for the 79
events available (total of 1321 helices) by considering the set of parameters that
resulted in a higher efficiency in reconstructing the tracks. This efficiency is
computed by averaging three figures of merit often used in track reconstruction:
precision (the rate between the number of real tracks reconstructed and total
number of reconstructed tracks), recall (rate between the number of real tracks
reconstructed and the actual number of real tracks in the input space) an good-
ness (rate between the difference of the total number of real tracks reconstructed
and the number of ghost tracks detected and the actual number of real tracks

3 When the accumulator reaches higher granularity, an actual peak may artificially be
split into two, so that grouping neighboring cells may be considered.

-865-

FEUP - Faculdade de Engenharia da Universidade do Porto

present in the input space). The optimized algorithm achieved a correct recog-
nition of 86.5% (average efficiency) of the tracks, and 99.5% of these tracks were
correctly reconstructed. This corresponds to a resolution better than 10% in the
momentum reconstruction of particles, according to an algorithm suggested in
[5]). Fig. 7 shows the reconstruction for the event shown in Fig. 3.

-30 -20 20 30

Fig. 7. Reconstructed event (compare with Fig. 3).

4.2 Using Data Parallelism

Having developped the sequential algorithm, the next task was to parallelize it.
The first approach was to use a master/slave architecture to implement data
parallelism (see Fig. 8). A master process continuously receives data from the
host machine and distributes them sequentially to free slaves that perform the
reconstruction algorithm. The minimum number of slaves required by the appli-
cation depends on the ratio between computing time and communication time,
as when the slave that has first received data to process becomes free, it is useless
to add processing nodes in the chain.

For this parallelization, we obtained a speed-up (gain) of 14.7 for the SHT
and 11.25 for the LHT. As the optimum numbers of slaves were respectively
15 and 12, the parallel efficiencies were equal to 98% and 93.8%. Note that as
the LHT algorithm is faster, its computation/communication ratio is lower, less
slaves are necessary to optimize parallelization, and so we get a lower speed-up.

■866-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 8. Master/Slave architecture.

However, the absolute time of operation for the parallel LHT remains lower than
that for the parallel SHT4.

4.3 Using Instruction Parallelism

The second approach for parallelizing the algorithm was to implement a form
of instruction parallelism. In this case, slaves operate over the same data (dis-
tributed by the master) but performing different parts of the whole reconstruc-
tion algorithm. Due to interdependencies, this approach tends to be more com-
munication intensive than the previous one based on data parallelism.

The division of tasks among slaves was made as following: each slave was
responsible to execute the whole Hough transform (either global or local) algo-
rithm for the same data over only one region of the parameter space, according
to Fig. 9. At the step 2 of the reconstruction algorithm (elimination), each cell of
the accumulator must know the value stored in all the cells laying in a neighbor-
hood region (for the fronteer cells, these regions are represented by the dashed
lines in the figure). Therefore, before starting step 2, slaves must communicate
in order to proceed in their tasks.

The way slaves communicate is illustrated in Fig. 10. In order to reduce the
communication overheads, only neighbor nodes do communicate. After perform-
ing the elimination task and before the grouping phase, slaves must communicate
again, sending the corrections their neighbors need. These corrections are a direct
consequence of the scanning mechanism used to look for peaks in the histogram
(from top to bottom, a line scanning mechanism).

The main difference of this communication scheme from the previous one is
that now the slaves send data only to the neighbors that are at their right or
below them, due to the scanning direction (see Fig. 11).

Fig. 12 illustrates the whole procedure for implementing this instruction par-
allelism.

4 A time of 2.02 seconds is necessary to process an event in the parallel LHT. This is
an average value, because events have different numbers of tracks.

-867-

FEUP - Facutdade de Engenharia da Universidade do Porto

\ !
! Slave 1 !

; i
Slave : |

Slave ' Slave K ;

i

! Slave HI i ^ u

1 Slave 14 !

1
1 Slave 1}

Fig. 9. The parameter space division and the neighborhood regions.

Fig. 10. Communication map among slaves.

Fig. 11. Sending corrections after elimination.

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 12. Data/Instruction flow in time.

For this application, a speed-up equal to 11.8 and an efficiency of 78.8% (for
15 slaves) were achieved for the SHT. This algorithm was not suitable for im-
plementing the LHT, because the speed-up remained very low in comparison to
the one with data parallelism due to the fact that, in the LHT, few communi-
cation is desired (computation is faster), and in this second application a lot of
communication is established.

5 Conclusions

A track reconstruction algorithm for a scintillating fibre tracker in experimental
high-energy physics was developed using Hough transforms. The algorithm was
successfuly implemented in a 16-node parallel machine. Two methods for parti-
tion of the sequential implementation were developed, using data and instruction
parallelism techniques.

The reconstruction algorithm was able to identify correctly 86.5% of the
tracks and allowed the computation of the momentum with a resolution better
than 10% for 99.5% of the identified tracks.

The parallel approach proved to run this complex reconstruction algorithm
in about 2 seconds per event, and using data parallelism a 98% of parallelism
efficiency was achieved. The algorithm is now being transported to a similar
MIMD environment based on DSPs, in order to achieve a further improvement
in processing speed.

869-

FEUP - Faculdade de Engenharia da Universidade do Porto

6 Acknowledgements

We would like to thank CAPES, CNPq, FUJB and FAPERJ (Brazil), CERN
(Switzerland), and UE (Belgium) for the financial support provided to this
project.

References

1. http://www.cern.ch.
2. T. Sjöstrand, Pythia 5.6 and Jetset 7.3-Physics and Manual CERN-TH/6488-92.
3. Illingworth, J. and Kittler, J.. "A Survey of the Hough Transform". Computer

Vision, Graphics, and Image Processing 44, pp. 87-116, 1988.
4. R. Brun et al., GEANT 3. CERN-DD/EE/84-1.
5. F. Anselmo, F. Block, L. Cifarelli, C. D'Ambrosio, T. Gys, G. La Commare. H.

Leutz, M. Marino and S. Qian. "Track recognition with a central two-shell scintil-
lating fibre tracker (SFT)". CERN-ECP/94-7, 1994.

6. Ohlsson, Mattias and Peterson, Carsten. "Track finding with deformable templates -
the elastic arms approach". Computer Physics Communications 71, pp. 77-98, 1992.

7. Telmat Multinode. "TN310 System Manual and Training Set". France, 1995.
8. "Networks, Routers and Transputers". Edited by M. Jane et al. SGS-Thomson,

1993.

•870-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Modeling of Explosions using a Parallel CFD
Code

C. Troyer1 *; H. Wilkening2 **; R. Koppler1 and T. Huld2

1 GUP, Johannes Kepler University Linz, A-4040 Linz,Austria
2 ISIS, Joint Research Centre, 1-21020 Ispra (Va), Italy

Abstract. Computational fluid dynamics is known as one of the most
challenging applications for high performance computing due to the com-
plex physics often involved in such simulations. In this paper we address
the problems that arise in the simulation of chemical explosions. In such
a simulation physical scales in time and space must be resolved, which
may vary by many orders of magnitude and therefore put strong require-
ments on the computational resources.
Parallel computation can offer the required computational needs at a
reasonable price when distributed memory machines such as workstation
clusters can be used.
In this paper we present first experiences made when parallelizing the
CFD code REACFLOW, an unstructured-grid CFD code for solving
transient chemically reactive flows such as vapour cloud explosions.

Keywords: Computational fluid dynamics, Distributed comput-
ing and operating systems

1 Introduction

Although gas cloud explosions in industrial environments have a very low prob-
ability, their effect on society can be severe. In 1974 for example, 28 people were
killed by an explosion in Flixborough, England [9].

Fig. 1 shows an aerial view of a chemical factory plant in Ludwigsburg, Ger-
many, after an explosion in 1948. The cause was a hydraulic rupture after ex-
posure to solar radiation of an overfilled tank car, followed by a vapour cloud
explosion of the released 30400 kg dimethyl ether. In the chemical vapour explo-
sion 207 people were killed and 3818 injured, 500 seriously [6].

Due to the large scales and the complex geometry of industrial plants and
to strong dependencies of explosions on scale and geometrical shape, explosions
on large scale are impossible or prohibitively expensive to study by experiments
only. A potential remedy is to study explosions by computational fluid dynam-
ics simulation. However, explosion simulations make enormous demands on the
computer code because an explosion is an unsteady phenomenon. Different flow

* Candidate to the best student paper award
** Corresponding author: Heinz.WilkeningQjrc.it, Tel.:+39 0332/78-5181, Fax:+39

0332/78-6198

-871-

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig. 1. Aerial view after an explosion in a chemical plant in Ludwigsburg, Germnay in
1948

regimes such as subsonic, transonic and supersonic flow must be adequately han-
dled by the numerical scheme. In addition, a large complex geometry must often
be modeled, but due to the nonlinearities of e.g. the chemical source terms, high
resolution is desired at certain positions in time and space. Parallel computing
is an obvious way to improve the turn-around time for such simulations. In ad-
dition, the simulations are often limited by the amount of memory which can
be accessed by a ordinary workstation. Such a situation is quite common with
today's hardware, and again here parallel computing can help by accessing the
memory of several workstations for a single calculation.

In this paper we describe the experiences made in parallelizing REACFLOW,
a CFD-Code for the simulation of chemically reactive gas flows, in particular for
gas cloud explosions. Due to the different scales in space and especially in time,
special attention is made to study the effects arising from the different time
scales involved.

The paper is organized as follows: section 2 presents the fundamental equa-
tions to be solved numerically. In section 3 we describe the numerical discretiza-
tion and methodology. A sample calculation run is presented in section 4. Section
5 gives a short description of the parallelization procedure, and results using this
procedure are presented in section 6. Finally, section 7 contains a summary of
the results obtained.

2 Governing equations

The numerical simulation of combustion processes is based on conservation equa-
tions for mass, chemical species, momentum and energy. For turbulence modeling

-872-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

additional transport equations for the turbulent kinetic energy k and the turbu-
lent kinetic energy dissipation e are solved. In weak form the system of governing
equations can be written in the following compact notation [3]

/ UdV) + / mFL,om(U)dA+ I niFi,diH(U,VU)dA= f S(U)dV
Jn / Jan Jen Jn

d_
dt

(1)
where L = (p~,,pUi,pE) is the vector of conserved quantities which are the
unknowns of the system. Here, pv (7 = 1,T) are the partial densities, pui is
the momentum vector and pE is the total energy. The other terms are given as
follows:

Convective fluxes: F;>conv = (p^-Ui,pmuj +pSij,pUi (h + uf/2))

Diffusive fluxes: Fildiff = (-Z?7§£, -ry, - £7=i h.,D^ - TijUj - X§-^

Source terms: S = (-p-,, -pgu -pdjUj - £7=1 Pi^H) . including chemi-
cal

reactions.
For detonation modeling the chemical mass production may be described

adequately by a reduced chemical kinetics scheme

R

pi - Mi X^ (v-<r-b ~ u-<r'f) ^r (2)
r=l

where M~ is the molar mass and vyrj is the stoichiometry of the 7'th component
in the r'th forward reaction (uir,b backward reaction) of a total of R chemical
reactions. Cor is the progress rate for the r'th reaction given by:

=/,(T) n fay*' - vm n fay (3)
where the forward and backward Arrhenius' rates for the r'th reaction, kf<r(T),
kb.r(T), have the following form:

kf,r(T) = Af,TT
b>-e-E'-'lRT (4)

(equivalent expression for fc(>,r(T)), where Afir, 6/,r and E/>r are constants for a
given reaction, r.

3 Numerical methods

3.1 Geometrical discretization

The compressible solver in REACFLOW is based on a numerical scheme of the
Finite Volume type. REACFLOW uses a computational grid which is unstruc-
tured in space and based on subdividing the computational domain into simple
geometrical elements. In two dimensions these elements are triangles, and in

-873-

FEUP - Faculdade de Engenharia da Universidade do Porto

three dimensions they are tetrahedra. For the three-dimensional version, the ge-
ometrical treatment is very similar to the one proposed by Xkonga and Guillard
[8].

Based on these elements, a set of control volumes (CV's) are constructed
around each vertex of the elements. In 2D the control volumes are delimited by
segments of the medians of the elements. Inside a triangle the medians meet at
the center of mass. xg = l/3(*, + xj + £*)• In three dimensions the medians of
the tetrahedra are planes going through the medians of one of the faces of the
tetrahedron and the opposite vertex. These medians again meet at the center
of mass of the tetrahedron, whereby the quadrilateral segments delimiting the
control volumes will remain plane. The segments of the medians delimiting the
control volume at one of the vertices of a tetrahedral element are shown in Fig. 2.

+*/)

l/3(Xi+Xj+x,)

Fig. 2. One tetrahedral element and the quadrilateral segments of the medians delim-
iting the control volume around the node Xi inside this element.

The boundary between any two control volumes is then formed by the seg-
ments inside those elements that have the two control volumes in common. Inside
a given control volume, Vj, only the average of the state, U, is known. This is
denoted Uj. Inside the control volume a certain functional dependence may be
assumed for U so long as the integral over Vj remains the same. Globally, U
then has a piecewise continuous form.

3.2 Time discretization

For the time discretization, normally a simple first-order Euler step is used,
whereby

-874-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

where the superscript n denotes the n'th time step, and Un is an approximation
to U [tn). This calculation may be explicit or implicit depending on whether
the flux and source terms are evaluated at tn or tn+1. For fast transient flow
phenomena such as shocks and explosions the explicit timestepping is preferred
and this has been used in the results described in this paper.

For the flux and source terms an operator splitting technique has been em-
ployed whereby each term in Eq. 1 is evaluated in turn and the resulting state
updated before the next term is calculated.

3.3 Convective terms

For each control volume the rate of change of U is determined by the flux into
that volume (Eq. 1). The type of discretization used means that U is generally
discontinuous across boundaries. If we assume that the state is constant on either
side of a boundary segment between two control volumes, we obtain a Riemann
problem. The problem of calculating the flux can then be solved by a number
of well-known methods. In REACFLOW we have implemented variants of Roe's
approximate Riemann solver [10], and a solver of the flux-vector-splitting type.

3.4 Diffusive Terms

The diffusive flux terms all depend on the gradient of the state vector, which
is not defined at the boundaries of the control volumes. A different approach
must therefore be taken. For the gradients we adopt a continuous reconstruction
where the state is assumed to vary linearly over each element with the values at
the vertices given by the average state in the corresponding CVs.

3.5 Source term treatment

In the case where the source terms depend only on state variables, the source
terms in each CV can be calculated separately, using the average state vector
in that CV. This is the case for the chemical and gravitational source terms as
well as for some of the turbulent source terms.

If the source terms contain the gradient of the state, as is the case for some
of the turbulent terms, the gradient is calculated elementwise as for the diffusive
terms. Then in each CV the source term is calculated separately for each element
making up that CV.

Often the source terms will make the problem stiff, so an implicit timestep-
ping method is needed. For instance, the finite-rate chemistry source terms of Eq.
2 may be very large for combustion processes. The finite-rate chemistry problem
then becomes for the j'th CV:

m((ihX*l-(ihY\-(„"rwr1.^1) ., (6)
At\\pEj \pE))- \zU"M+1>Tn+1)AH

This is a nonlinear algebraic problem, which is then solved using a modified
version of the Xewton-Raphson method[4]. Using such an iterative method has
a great inpact on the parallelization, as will be shown later.

-875-

FEUP - Faculdade de Engenharia da Universidade do Porto

4 An example large scale detonation simulation

In this section we will show an example of a simulation made with REACFLOW,
and show comparisons with experiments. For this simulation the non-parallel
version of REACFLOW was used. With this version it is possible to perform
adaptive simulations. For details of the adaptive algorithm see [11].

This large scale hydrogen experiment was performed in the Russian RUT
Facility located near Moscow. The facility has a total volume of about 263m3

in the configuration used here. The volume has compartments of different size.
There is a large volume, the so called canyon, followed by a long channel. The
facility has a total length of 28m. An outline is shown in Fig. 3. Details of the
geometry and the experiments performed can be found in [1].

Fig. 3. Outline of the RUT facility.

For the simulation we chose test hyd5 with a uniform hydrogen concentration
of 20% hydrogen (by volume) in air at ambient conditions. The detonation was
initiated by 200g of high explosive at a low position inside the canyon near the
end wall (position A).

Fig. 4 shows a detail of the pressure distribution in the canyon at 2.5ms after
ignition. The initial spherical detonation has interacted with the channel walls,
which generates a complex sytems of pressure waves. Highest pressures occur
right at the detonation front.

For the simulation with REACFLOW we used an initial grid with 3615 nodes
and 15592 elements. The mesh distribution is nearly uniform. This corresponds
to an initial resolution of Ax ~ 0.5m. During the simulation nodes were added
down to a minimum resolution of 0.04m depending on the pressure gradient.
The maximum number of nodes reached during the simulation was about half a
million node points.

Fig. 5 shows comparisons between experimental and simulated pressure time
history plots at 2 different positions in the canyon. The detonation velocity

-876-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 4. Hydrogen detonation in the RUT facility, with 20 Vol% H2. Pressure at
t = 2.5ms after ignition, 25 isolines from 1 to 15bar.

is 1750m/s in the experiment as well as in the simulation. Results compare
generally well with the experiments.

2.0

1.5

la
a.

S 1.0

Experiment x=5.66m, y=2.5m, z=1 0m
REACFLOW x=5.77m, y=2.5m, z»0.84m

i' *■*.■■.■'-
0.5 > ■&'

4.0

3.0

2.0

1.0

Experiment x=O.0m, y=1.25m. z=-1.0m
REACFLOW x=0.0m, y=1.25m. z=-1.25m

0.0 -- - 0.0 '-'-'—■- --
0.0 10.0 20.0 30.0 40.0 50.0 0.0 10.0 20.0 30.0 40.0 50.0

time [ms] time [ms]

Fig. 5. Hydrogen detonation in the RUT facility. Pressure versus time for two positions
inside the canyon (left is a sidewall, right is an endwall position).

5 Parallelization Procedure

Due to space limitations we describe here only the basic principles rather than
the details. To ensure portability, parallelization is based on the message passing
paradigm, and this is implemented using MPI libraries[7] which are available for
almost every parallel machine.

-877-

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig. 6. Partition of the RUT geometry into eight subdomains.

To define the tasks to be calculated the domain is split into as many sub-
domains as there are processors available. Since at the moment REACFLOW is
parallelized in a non-adaptive static grid version the partitioning of initial grid
is done outside REACFLOW using a program called PART. PART is based on
the public domain libary METIS [5]. Fig. 6 shows how PART-METIS splits the
calculation domain of the RUT facility shown in section 4 into eight subdomains,
at the same time including also partitioning of the grid. In a parallel calculation
each subdomain is calculated by one processor.

Overlapping subdomains are used, since the calculation of the fluxes for a
given CV require the states in the neighbouring CV's to be known. Using this
technique, communication must happen only before, not during the calculation
step. This reduces the amount of communication significantly for the price of
additional memory use, as the overlapping CV's are stored twice. In addition,
larger messages can be exchanged between processors, which again reduces com-
munication time due to saved latency time of a communication process.

To organize the communication every processor P keeps the following lists:

- neigbor: a list of direct neighbour-processors P'
- recvMap: a list of pointers to CV's of P that must be updated by values of

CV's from P', NULL if P' is not a direct neighbour of P
- sendMap: a list of pointers to CV's of P that must be sent to P' to update

these CV's on P', NULL if P' is not a direct neighbour of P
- recvCount: integer list with the number of CV's that must be updated

from P', recvCount[P'] = 0 if P' is not a direct neighbour of P
- sendCount: integer list with the number of CV's that must be sent to P',

sendCou'ntfP'] = 0 if P' is not a direct neighbour of P

Fig 7 illustrates these lists for processor PI, by means of a small example in
two dimensions.s

-878-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

control volumes of PI

8 | 9 |10|1 ||12|I3|14|15|18| 6 | 5 [7 | 4 [I9|l7|l6|20l

sendMap[0]

ii i, i, i, i, ij, ii i,,, irTi, i, i, <,

' lllllll H | i 1111111
I—I recvMap[0]

rrh nr
sendMap[2]

neighbor | 0|2 |

recvMap[2]

sendCount |4 |0 |4 |

recvCount | 4 | 0 |4 |

Fig. 7. Data structure for the communication table for processor PI.

6 Examples of simulations using Parallel REACFLOW

Two example cases are presented in this section: a non-reactive shock-tube
simulation, and a reactive detonation simulation, shown in non-parallel form
in section 4 (RUT). All simulations are performed on a shared-memory SGI-
Origin 2000 parallel computer using from 1 up to 16 processors and a distributed
memory workstation cluster. The workstation cluster is built from eight DEC-
Alpha 21164A based machines connected by a Gigabit Myrinet network in a
ParaStation 2 system configuration1.

For all calculations which have been made it was found that there was no
essential difference in the physical results between the single processor version
of the REACFLOW and the parallel version. There was also no influence by the
number of processors used. The small differences that have been found are due

1 Details of the ParaStation 2 concept can be found under
http://parastation.ira.uka.de/.

-879-

FEUP - Faculdade de Engenharia da Universidade do Porto

to roundoff errors, as in the parallel version numerical operations are performed
in a different order.

The memory use of the parallel version of REACFLOW scales well against
the single processor version of REACFLOW, nearly perfectly up to 10 processors
but also depending on the problem size.

6.1 Inert shock—tube test case

As an example to test the fluid solver, a chemically inert test case was chosen.
This allows to test the communication of the parallel version of REACFLOW
including convection, diffusion and turbulence. Results were also compared with
experiments.

The 12m FZK-shock-tube (0.35m diameter) [2] was separated into a 3m long
helium filled high pressure section and a 9m long low pressure section. The last
6m of the low pressure section contained circular orifices as turbulence generators
which blocked 30% of the tube.

Table 1. Speedup measurements for shock-tube simulation on SGI-ORIGIN 2000

Processors 1 2 3 4 5 6 7 8 9 10 11 12 14 16
Time [min] 177 89 56 41 31 27 25 23 20 19 19 18 17 17
Speedup - 1.99 3.16 4.41 5.71 6.56 7.08 7.70 8.85 9.32 9.32 9.83 10.41 10.41

Table 2. Speedup measurements for shock-tube simulation on ParaStation 2 work-
station cluster

Processors 1 2 3 4 5 6 7 8
Time [min] 258 169 165 110 94 50 36 35
Speedup - 1.53 1.56 2.35 2.74 5.16 7.17 7.37

The results shown in tab. 1 and 2 show measured speedups for 1 to 16 proces-
sors for the SGI-Origin and 1 to 8 processors for the ParaStation 2 workstation
cluster. Speedup is nearly linear up to 10 processors even though with a grid of
30517 nodes and 115239 elements the subtasks have become very small for each
processor when using ten processors. For some values the speedup is even super-
linear, probably due to cache effects. This is more visible on the ParaStation 2
workstation cluster as the cache of the DEC-Alpha is much smaller than that of

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

the SGI-Origin 20000. The results for the ParaStation 2 workstation cluster are
also influenced by the fact that during the calculation the cluster may be used
by other users both in interactive mode and in addition as FTP server which
can generate unforeseen loads. These loads can distort the results.

6.2 Chemical reactive detonation simulation

For testing the chemical reactive part of the parallel REACFLOW version the
simulation described in section 4 was repeated with one up to 16 processors in
parallel. As this simulation had to be done in a non-adaptive way, a finer static
grid with 160794 nodes and 841566 elements was used. As this size was beyond
the memory capabilities of a single workstation of the ParaStation 2 cluster, in
these tests only the SGI-Origin 2000 was used.

1.5 - 3.0
adaptive x=5.66m, y=2.5m. z=1.0m adaptive x=0.0m, y=t.25m, z=-l.0m
parallel x=5,77m. y=2.5m, z=0.84m parallel x=0.0mt y=1.25m, z=-1.25m

ä 1-0 2.0
a.
5 A

°- 0.5 , '1.0

0.0
0.0 10.0

0.0
20.0 0.0 10.0

time [ms] time [ms]
20.0

Fig. 8. Hydrogen detonation in the RUT facility. Pressure versus time for two positions
inside the canyon (left is a sidewall, right is an endwall position).

Fig. 8 shows a comparison between the adaptive calculation presented in sec-
tion 4 and the result obtained by a parallel simulation, described in this section.
Since in the parallel case the spatial resolution of 0.13m is much coarser than
0.04m for the adaptive one, results are not as good as before. The maximum
overpressure in the detonation front is more underpredicted than before.

Tab. 3 shows measured speed-ups for 1 to 16 processors. The speed-up is very
poor for more than 4 processors even though the problem (with 160794 nodes
and 841566 elements) is much bigger than the inert shock tube calculation. This
can be explained by the problems arising due to chemical reactions in a detona-
tion. Chemical reaction takes place on much shorter time scales than the fluid
flow; therefore the chemical source term Eq. 2 is solved implicitly by an iterative
algortithm (section 3.5). This implicit algorithm shows different convergence be-
haviour depending on whether or not a detonation wave is passing through the

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 3. Speedup measurements for detonation simulation on SGI-ORIGIN 2000

Processors 1 2 4 6 8 10 12 16
Time [min] 2070 1212 698 515 443 370 343 279
Speedup - 1.71 2.97 4.02 4.67 5.59 6.03 7.42

given point in space. The fluid solver itself is explicit which means that the cal-
culation time for a timestep stays almost constant for each subdomain at any
time.

'V,'

■K

1000
Timestep Number [-]

Fig. 9. Loadbalancing for the chemical solver for 10 processors.

Fig. 9 shows the CPU time spent in the chemical solver per timestep for ten
processors. The CPU time varies between 0 and 9s with an average of about 2
to 3s. Nevertheless, as all processor are synchronized before and after the chem-
ical solver, the fastest processors have to wait for the slowest ones. The total
time spent in the chemical solver for all processors is about 196min, which is
more than 50% of the whole calculation time. If optimal load balancing within
the chemical timestep could be achieved, the calculation time for the chemical
timestep would be reduced to about 85min per processor or 259min total calcu-
lation time including also the fluid solver. Consequently the speedup would also
increase from 5.59 to 7.99, which then would correspond to a resonable efficiency

-882-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

of 79.9%.
In addition, fig. 9 shows nicely how the computational effort for the chem-

ical solvers increases when the detonation front moves into the corresponding
subdomain of a processor.

Fig. 10 illustrates the load balancing of the chemical solver against the fluid
solver. The total calculation time measured is mainly the sum of the maximum
values of both graphs which is in total about 528min. The time spent in the
chemical solver is nearly equal to that of the fluid solver. If there were optimal
load balancing in the chemical solver as well as in the fluid solver, the total
calculation time would reduce to 413min, with the chemical solver using about
40% and the fluid solver 60% of the total calculation time.

s

i

200
3
E

S 150

100

500 1000 1500
"Hmestep Number [-]

50

500 1000 1500
Timeslep Number (-]

Fig. 10. Load balancing for the chemical solver (left) compared to the fluid solver
(right) for 4 processors. Graphs show total time for maximum, minimum and average
values of all 4 processors, integrated over all timesteps.

7 Summary

We have presented a parallelized version of REACFLOW, an unstructured grid
CFD code for studying combusting gas flows. Preliminary results show that for a
test case with rather complicated physics (shock waves and turbulence) the paral-
lelization speed-up results are excellent both on shared-memory and distributed-
memory architectures. For a case with combustion the iterative chemical source
term solver causes rather severe load imbalance. To solve this problem, it is likely
that dynamic node repartitioning will have to be introduced in the code. Such a
solution would also be an advantage when dynamically adaptive grids are used.

For calculations where load imbalance is not a serious issue the code can be
used both on shared-memory and distributed-memory computers, showing that
communication is not a bottleneck. Being able to run on distributed memory

-883-

FEUP - Faculdade de Engenharia da Universidade do Porto

machines (in the shape of workstation clusters) is important, since these enjoy
a significant advantage in price over shared-memory machines. This idea is fully
supported by the ParaStation concept.

Acknowledgements

This paper is part of a Diploma-Thesis prepared by Christoph Troyer at the
University of Linz, Austria, in collobration with the Joint Research Centre of
the European Commission in Ispra, Italy.

We would like to thank Thomas Warschko from the University of Karlsruhe
for his support by providing CPU time on their ParaStion 2 workstation cluster
and also for his useful suggestions made during the project.

We would also like to thank Wolfgang Breitung and his co-workers of the
Forschungszentrum Karlsruhe, Germany, for their support in providing us with
the experimental data from the FZK shock-tube tests and the data from the
RUT facility.

References

1. Breitung, W., Dorofeev, S. B., Efimenko, A. A., Kochurko, A. S., Redlinger, R. and
Sidorov, V. P. (1994) Large Scale Experiments on Hydrogen-Air Detonation Loads
and their Numerical Simulation, Proc. Int. Topical Meeting on Advanced Reactor
Safety (ARS '94), Pittsburgh, USA, Vol. 2, pp. 733-745.

2. Breitung W., Royl P. and Veser A., Results on Hydrogen Behavior and Mitigation
in Severe PWR Accidents, FZKA 5914 report, Karlsruhe, Germany, 1997

3. Grasso F. and Meola C., Euler and Navier-Stokes equations for compressible flows:
finite-volume methods. In: Handbook of Computational Fluid Mechanics, Peyret,
R. (Ed.), Academic Press, London, 1996

4. Huld T., A Finite-Rate Chemistry Solver for REACFLOW, JRC Ispra Report
5. Karypis G. and Kumar V., METIS: Unstructured Graph Partitioning and Sparse

Matrix Ordering System, Tech. rep., Department of Computer Science, University of
Minnesota, 1995 (http://www.cs.umn.edu/ karypis/metis/metis.html)

6. Marshall V. C., Major Chemical Hazards, Ellis Horwood Limited, Chichester (1987)
7. M.P.I. Form, MPI - A Message Passing Interface Standard, Computer Science Tech-

nical Report CS-94-230, University of Tennessee (1994)
8. Nkonga B. and Guillard H., Godunov type method on non-structured meshes for

three-dimensional moving boundary problems, Comput. Methods Appl. Mech. En-
grg.113, 183-204 (1994)

9. Parker R. J., The Flixborough Disaster, Report of the Court of Inquiry, HMSO
(1975)

10. Roe, P. L., 1980, Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes, J. Comp. Phys., 43, pp. 357-372.

11. Wilkening H. and Huld T., An adaptive 3-D CFD solver for modeling explosions
on large industrial environmental scales, Combustion Science and Technology. 149,
pp. 361-388, 1999

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fluvial Flow of the Guaiba River - A Parallel Solution
for the Shallow Water Equations Model

Rogerio Luis Rizzi13, Ricardo Vargas Dorneles21, Cesar Albenes Zeferino3,
Tiaraju A. Diverio3, Philippe O. A. Navaux3, Altamiro A. Susin3, Sergio Bampi3

1 Departamento de Matemätica e Estatitica, Universidade Estadual do Oeste do Parana,
Campus de Cascavel, Rua Universitäria, 2069, 85801-110, Cascavel, PR, Brasil.

2 Departamento de Informätica, Universidade de Caxias do Sul, Rua Francisco Getülio
Vargas, 1130, 95001-970, Caxias do Sul, RS, Brasil.

' Programa de Pös-Graduacäo em Computacäo, Institute de Informätica, Universidade
Federal do Rio Grande do Sul, C.P. 15.064, 91501-970, Porto Alegre, RS, Brasil.

{rizzi, cadinho, zeferino, diverio, navaux, susin, bampi}
@inf.ufrgs.br

Abstract. This work presents a parallel solution for the simulation of the fluvial
flow of the Guaiba River implemented in a PC cluster with message passing.
The governing equations are discretized by centered finite difference, which are
defined into a staggered grid. Applying the ADI technique, it was developed a
semi-implicit numerical scheme, which is solved in a parallel way using domain
splitting in the Y direction and the pipelined Thomas in the X direction.

1 Introduction

The Guaiba River bathes all the metropolitan region of the city of Porto Alegre (at the
south of Brazil). With 470 km2 of surface, it receives the outflow of the Jacui delta,
which is formed by the confluence of Jacui, Cai, Sinos and Gravatai Rivers, and flows
into the Patos Lake [1]. It is about 50 km long and 15 km wide in some sections. The
Guaiba River is sited between the 50° and 55° West parallels and 28° and 35° South
latitudes. It is quite important for water supplying, fluvial transport and soil irrigation
of its region. However, it receives a lot of industrial and domestic pollution.

The development and implementation of a high-resolution computation model
allows the detailed simulation of the hydrodynamics behavior and mass transport in
the river. This could help in the choice of the outflow points of the sewerage system
and in the planning and evaluation of the impact of works for hydric usage, and so on.

However, to perform the simulation with the required refinement in an useful time,
it is necessary high computational power and a lot of memory. PC clusters (PCCs) are
an effective alternative to get high-performance in research institutes that can not pay
for expensive supercomputers. With the development of high speed switched LANs,
such as Myrinet, it is possible to build a PCC with an equivalent performance of a
vector computer, but with a fraction of its price.

-885-

FEUP - Faculdade de Engenharia da Universidade do Porto

The Group of Computational Mathematics and the Group of Parallel and
Distributed Processing of the Institute of Computer Science of the UFRGS has been
working with the study and parallel implementation of numerical methods for partial
differential equations (PDEs) solution on distributed memory machines. These studies
have been performed on a PC cluster, where a parallel computational model for the
Guaiba River was implemented.

2 Mathematical Model and Boundary Conditions

The mathematical model used in these parallel solutions is based on the Shallow
Water Equations (SWEs), which are the governing equations for the two-dimensional
flowing. They are obtained by means of the vertical integration for the horizontal
water velocity to obtain the averaged horizontal velocity, resulting in a 2-D model.
The SWEs are a quasi-linear system of hyperbolic PDEs for an incompressible and
inviscid fluid with a free surface. Such equations formed by horizontal momentum
and continuity equations can be described as [1]:

dU TTdU T/dU „ 8fj U4U2 +V2 r „,„ „

dt dx dy S dx cJHu p^Hu K)

du TT8v „dv ^T dij v4u2 +v- rsv

dt Bx dy S Öy Ch
2Hv PMHV W

dn | d{HuU) { d{Hvv)_0 (3)

dt dx dy

where:

• 7] = rj(x,y,t) is the elevation of the water above the mean level;

• Hu and Hr represent the depth below the mean level;

• Hu = Hu +TJ and Hv = Hv+rj are the distances from bottom to water surface in

the X and 7 directions, respectively;
• U = U[x, y, t) and V = V{x, y, i) are the depth-averaged velocity components in

the Xand Ydirections, respectively, in the Eulerian coordinate system[x, Y);

• g is the gravity acceleration;

• O = 2a>sin<j> is the Coriolis force, where« is the angular velocity of the earth

and if> the latitude;

• Ch = 7,83ln(0.3H/Zo) is bottom stress Chezy coefficient, where Z0 is the bottom

roughness;
• pwaler is the water density;

-886-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

• TSX = CDpairWx
2 is the wind stress component at water surface in the X direction,

where Wx is the wind velocity component in this direction, measured 10 meters

above water level, pa.r is air density, and CD is water surface stress coefficient;

• TSV = CDpajrWx is the wind stress component at water surface in the Y direction,

where W. is the wind velocity component is this direction;

• e is the coefficient for the turbulent viscosity.

Since this is an initial-boundary value problem, it is necessary to specify these
conditions. The physical boundary is divided in two sets: one is closed for the
riverside and the other is opened, which is a virtual boundary delimiting the domain.
In the closed boundary, it was defined null velocities and a zero level. In the opened
boundary, it was specified two flow types: inflow and outflow. Therefore, it this
mathematical model it was used two boundary conditions type:

• water level type;
• flow type.

3 Discretization: Semi-Implicit Scheme and Space-Staggered Grid

The numerical scheme was defined over a space-staggered grid Arakawa class C
(Fig. 1). The decoupling of the variables that do not need to be defined on the same
point of the grid results in a reduction of the processing time. Furthermore, this
scheme maintains the same truncation error and has good conservative properties [2].

j- 1/2

i + 1/2

Fig. 1. Regular space-staggered grid Arakawa class C.

In the numerical scheme it was used a semi-implicit approach. Such decision was
based on the fact that in a totally explicit approach the Courant-Friedrichs-Levy
(CFL) conditions impose serious constraints in the time step. Furthermore, if sharp
gradients occur, the numerical solution can develop oscillations or can be affected by
the numerical viscosity [3]. On the other hand, in a fully implicit scheme, the
constraints to the time step are removed because it is possible to generate
unconditionally stable schemes. However, it is necessary to solve, simultaneously, a

-887-

FEUP - Faculdade de Engenharia da Universidade do Porto

large number of coupled nonlinear equations, and this solution depends on the
available hardware. Even in this case, for accuracy, the time step can not be arbitrarily
large.

An alternative strategy is used in this work. Some terms of the governing PDEs
are discretized in an implicit way and the others in an explicit one. Using such
approach in the SWEs discretization, the resulting algebraic linear equations systems
(ALES) have structured pentadiagonal coefficient matrices. For instance, these
matrices can be solved by iterative methods on the Krylov subspace or by direct
methods. However, to improve the computational performance, these matrices can be
partitioned using techniques such as ADI (Alternating Direction Implicit) to get
structured tridiagonal matrices, which can be efficiently solved by the Thomas
method.

A popular scheme that applies the ADI technique was developed by Leendertse
([4] and [5]) and used by others such as [1] and [6]. However, in Leendertse's
approach, the continuity and momentum equations are alternately coupled to build the
equations systems that, in this approach, result in non-symmetric matrices.

Since we goal to build symmetric, positive and defined (SPD) semi-implicit
schemes, we applied the strategy developed by Casulli [3]. This strategy is a semi-
implicit scheme for the momentum equations, where the water velocities are the
unknowns, and for the continuity equation, where the levels are the unknowns. If the
velocity terms U?^,,^ and F("t' > in the momentum equations are substituted in the

continuity equation, one can obtain ALES with an SPD structure.

In this way, the level gradient and the stress term x = g^ju2 +V2/C'^H in the

momentum equations (1) and (2), and the velocity divergent of the continuity
equation (3) are dicretized implicitly. The convective terms, the stress coefficient, the
Coriolis force term and the dissipation term are discretized explicitly.

Using an approach based on centered finite difference on a space-staggered grid,
after some algebraic manipulation and reordering of terms, the discretization process
results in two ALES (one for each direction) with SPD coefficient matrices. These
systems are described below:

EnnJ) + C'i'u\ + D<.j)=AZ¥- (5)

where the coefficients, for the first half time step (n + /,) are:

^-'♦!(fv Hu"(,.y,j) , Hu'a-xj)
l + Xl^At 1 + z^At

%,,, = %,,, = -§(^
Hu"(,.y,j)

/ + *V/„y)*

(6)

(7)

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

/M = *M-(^)
' HU'WJ) A

J + X"(,./!.j) At Kü/))-
! Hu"{i-y,j) '

I+y"(. ,, -At NtJ (8)

"^rM^" //v"(/j->5)v("7->«))

The coefficients for the second half time step (in the Y direction) are analogous.
The velocities u"*% , and K"+' . are recovered after the calculation of the levels

n",lu) and rjo.j.i)- The expressions Fu^y^ and Fv^.,^ aggregate the explicit

discretizations that correspond to the convective terms, wind stress at the surface and
viscosity terms. The velocities are obtained using the following expressions:

I/"*1 - AyFvl^)-gA(Cy\/)-C)).

(9)

(10)

It is possible to increase the time step of the numerical scheme when the
convective terms in fH" and Fvl . ,,<, are discretized using some methods such as

\l-/i-J) \i-J-/:l

upwind, semi-Lagrangian, and others.

4 Solution Strategy and Parallelization

Since in the ADI technique the time step is divided in two halves, it is necessary to
obtain the numerical solution for the momentum and continuity in the X direction and
for the momentum and continuity in the 7 direction.

Thus, in this work, the parallelism was obtained splitting the domain in strips in the
Y direction for the first half step and applying a pipelined algorithm in the X direction
for the second half-step.

The direct Thomas method was chosen to solve the ALES At] = /generated by

(4), where A is the coefficient matrix, TJ is the vector of unknowns and / is the

independent terms vector. Alternatively, it would be possible to apply an iterative
method of the Krylov subspace, such as the conjugate gradient, using a Schwarz
splitting as a preconditioner.

FEUP - Faculdade de Engenharia da Universidade do Porto

CK/> D{i.j)

ui:.i) H Q,,, A,,
1(1.,)

=

fu.n

A-.n

Fig. 2. Structure of the tridiagonal system.

The matrix generated by expression (4) has the structure shown in Fig. 2, where
the index j refers to column in the domain, and is solved by Thomas method in two
stages [10]. The first stage is named forward and defined by:

D\,.j) = DUj)/C{IJ} ■

D
'M = D(I.JA

C
«J) - Ea.i)D'(■-•■<)) ' ' = 2 » •

/ ('■'» = f{i.nlcv.j) ■

(11)

(12)

(13)

f'd.j) = {f{lJ) - E{iJ)f\:-,.j))/{c{iJ) - EltJfi«.,.») , i = 2,...,n. (14)

Second stage, called backward, determines the solution for rju ., and is defined by:

%j) = f\«J) ■ (15)

1(a) = f\:i) - D\i-J)r](M.i) ' ' = " -l--1 ■ (16)

The solution for the PDEs in the X direction, where it is considered the domain
splitting in strip, uses one halo with two lines of overlapping in the artificial
boundary. With this procedure, it is guaranteed that the levels and velocities values
are the same in the boundaries of the overlapped subdomains.

The solution in the Y direction, where the second half step is solved, is the part of
the algorithm that demands more inter-processors communication, because the
Thomas algorithm has global data dependency. In this stage, the matrices are split and
allocated in different processors. To minimize the idleness of the processors and
improve the method efficiency, it was used the pipelined Thomas, as defined in [7].
The scheduling of this algorithm is shown in Fig. 6.

-890-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

4.1 Domain Splitting in the Y Direction

The core of the splitting strategy is the building of overlapped subdomains that satisfy
discretized PDEs requirements concerning to mass conservation. Since the numerical
scheme considers at most three cells to define some derivatives, the used overlapping
must include at least two rows of the grid for each frontier side, which was artificially
introduced by the domain splitting (Fig. 3).

h,

halo -+■

h,

Fig. 3. Artificial boundary introduced by the domain splitting into subdomains.

o

In Fig. 3, dQk and Qk denote, respectively, the boundary and the interior of a

specific subdomain Qk. The global domain was stripped split in the Y direction,

generating subdomains for the Guaiba River, which can be viewed in Fig. 4.

.:::;.?.3„:i:....

Yü P2

311rsp Po: :lfc-

Fig. 4. Splitting of Guaiba River domain into subdomains strip type in the Y direction (results
of an execution in 4 processors with a refinement of 2x2 for 10000 cycles).

-891-

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig. 5. Velocity field of Fig. 4, where I Uo„ I = 0.42 m/s; I V^ I = 0.36 m/s; I n ^ | = 0.21 m.
The opened boundary conditions were defined as velocity type and, in the correspondent cells,
| U | was set as a constant equal to 0.4 m/s.

The results shown in Fig. 4 and Fig. 5 were obtained using the following parameters:

• 70 =0.20 m;

• n = 7.27E-5 mVs;
• Ch =65.0;

• CD=3.0.E-6;

• W = 6.0 m/s2;
• e = 15.0 mVs.

4.2 Pipelined Thomas in the X Direction

The direction Y of the ADI technique is solved in the second half step. However, due
to dependencies existent in this in this direction, the solution of the matrices generated
for one column can not be done in parallel. The coefficient matrices can be generated
by each processor in parallel with the others, but the solution of the matrix in
processor p depends on the solution of the matrix in processor p-\. These
dependencies cause some idleness in the processors and make necessary some
communication between them. At data transference, the processors are synchronized
using blocking communication primitives, which simplify the synchronization
process.

The solution for the matrices, which are subdivided and allocated in different
processors, is done applying the Thomas algorithm in the pipelined form, as shown in
Fig. 6.

-892-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

To Ti T2 T3 T4 Ts Ts T7 Ts T9 T10

P3 SiF S2F S3F S,B S2B S3B

P2 SiF S2F S3F S,B S2B S3B

P< S,F S2F S3F S18 S2B S3B

po SiF S2F S3F SiB S2B S3B

Fig. 6. Scheduling of the pipelined Thomas with three columns (S,, S, and S,) in the A1 direction
for a 4-processors machine (p„, p,, p, and p,). SF and SB are, respectively, the forward and
backward stages for the i-th column in each processor.

In the solution of a column, the//' processor receives the values of Z)' .;iand/' .„
from the (p-1)" processor and proceeds to the forward stage in the matrix generated
for its part of that column. After that, it sends the values of Z)' and/'(to the
(p+1)" processor. In a P processors machine, this algorithm considers that the forward
stage is concluded for each tridiagonal matrix when the Ph processor receives the
scalars Z)'„ and/' „ from the (P-lf processor. Then the algorithm proceeds until
it finishes every step of the forward. After that, the backward is started and, since in
this stage the global dependency is restricted to the scalar/'(/i , the Ph processor sends
this scalar to the (ZM)" processor. This procedure is done for each column of the
entire domain, obtaining the vector of unknowns for each tridiagonal matrix, which
contains the values of the level in each cell. Finally, the levels in the lines of the halos
are exchanged and the velocity values in the Y direction are calculated for the entire
domain. Then, the algorithm is restarted for the next time step.

The scheduling in Fig. 6 represents a regular domain, where each column involves
every subdomain. In an irregular domain, as in this work, some processors could start
the forward stage of the columns beginning in their subdomains, what could reduce
their idleness. However, it would increase the communication, because it would be
necessary to send additional information about the column to be calculated.

5 Implementation and Results

The pipelined Thomas algorithm was implemented in C language using MPI message
passing library and was run in a PC cluster based on Linux operating system. This
cluster has four homogeneous nodes interconnected by a Fast Ethernet switch and a
Myrinet switch. Each node consists of a Dual Pentium Pro 200 motherboard with 64
Mbytes of main memory.

The discretized region (Guaiba River) was approximated by cells, using different
resolutions, where the dimensions of the cells vary from Ax = Ay = 1000 m to
Ac = Ay = 50 m. With this size of cell, the entire domain is composed of 300.000
cells. For each different resolution, the time step At is automatically calculated based
on the Courant number and, when the real bathymetry is included, an interpolation is
performed.

The Thomas algorithm is extremely efficient when it is applied to tridiagonal
matrices and its complexity is 0(n). Thus, a parallel realization that uses this semi-
implicit numerical scheme with two time steps must be efficient to be competitive.

-893-

FEUP - Faculdade de Engenharia da Universidade do Porto

One strategy to improve its performance is sending the data of more than one column
per message. Povitsky, in his work [7] comments that it is possible to calculate the
optimal number, as a function of the computation and communication times.

Several executions of this parallel implementation were performed varying the
number of processors and the refinement in the PC cluster using the Fast Ethernet
network. Fig. 7 and Fig.8 resumes some of these results.

2.50

Q. 2.00
-1
T) 1.b0
<D
0) a 1.00

en
U.bO

0.00

Speedup x Refinement
(Fast Ethernet - 2, 3 and 4 processors)

IS III III III II
r#

Refinement

•8»
^ <#

Fig. 7. Speedup x refinement using Fast Ethernet network (in each group of three bars, these
bars represent the speedup obtained with 2, 3 and 4 processors, from left to right).

Fig. 7 shows that there is no speedup for refinements smaller than 3x3. This occurs
because the sequential Thomas is a very efficient algorithm and the communication
overhead in the parallel execution is bigger than the time saved with the distribution
of the workload between the processors. However, when the refinement is bigger, the
workload increases and the speedup grows, as is shown in Fig. 7.

Fig. 8 shows that the efficiency increases when the refinement grows, because the
workload increases quadratically and the communication load has a linear growth.
Furthermore, for each refinement, the efficiency decreases with more processors, as a
consequence of the communication/computation rate. In other words, the
communication for each processor remains the same but the computation is
distributed among all the processors.

-894-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

LU

0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Efficiency x Refinement
(Fast Ethernet - 2, 3 and 4 processors)

[fUtt
^ ST

Refinement

^

Fig. 8. Efficiency x refinement using Fast Ethernet network (in each group of three bars, these
bars represent the speedup obtained with 2, 3 and 4 processors, from left to right).

6 Conclusions and Future Works

In this work it was presented a semi-implicit numerical scheme with tridiagonal and
SPD algebraic equations systems. The parallelism was obtained using domain
splitting for the X direction and a version of the pipelined Thomas algorithm for the Y
direction. The numerical results are close to that obtained from data measurements of
real events, although the computational model still requires some additional work in
order to calibrate it to the real data of the Guaiba River. The numerical results of the
sequential and parallel realizations are fully coincident.

Some works in development include a parallel version using Krylov-Schwarz
methods, specially the preconditioned conjugated gradient. We have used a different
discretization, similar to that described in [8] and [9], which results in a pentadiagonal
SPD matrix, solved by conjugate gradient. We have already a parallel version and we
are currently working in the Schwarz splitting as a preconditioner.

Once we have completed the implementation of the methods described, we will
focus in the use of numerical schemes with generalized coordinates aiming to include
adaptive meshes and dynamic load balancing; and the inclusion of mass transport
equation to simulate the transport of industrial and domestic discharge.

Acknowledgments

This research was supported in part by CNPq and CAPES.

-895-

FEUP - Faculdade de Engenharia da Universidade do Porto

References

1. Casalas, A.B.: Modelo Matemätico de Correntologia do Estuärio do Rio Guaiba.
Technical Report 12, Institute de Pesquisas Hidräulicas da UFRGS, Porto Alegre (1985)

2. Messinger, F.: Numerical Methods: The Arakawa Approach, Horizontal Grid. Global and
Limited-Area Modeling. Camp Springs: Academic Press (1998)

3. CasulH, V.: Semi-Implicit Finite Difference Methods for the Two-Dimensional Shallow
Water Equations. Journal of Computational Physics, Vol. 86 (1990) 56-74

4. Leendertse, J.J.: A Water-Quality Simulation Mode! for Well-Mixed Estuaries and Coastal
Seas: vol. I, Principles of Computation. Technical Report RM-6230-RC, The Rand Corp.,
Santa Monica California, (1970)

5. Leendertse, J.J., Gritton, E.C.: A Water-Quality Simulation Model for Well-Mixed
Estuaries and Coastal Seas: vol. II, Computation Procedures. Technical Report R-708-
NYC, The Rand Corp., Santa Monica California, (1971)

6. Kaplan, E. A.: Shallow Water Model Distributed using Domain Decomposition. Master's
Thesis. Department of Numerical Analysis and Computing Science. The Royal Institute of
Technology. Sweden. Available http://www.fing.edu.uy/~elias. (1998)

7. Povitsky, A.: Parallelization of the Pipelined Thomas Algorithm. NASA/CR-1998-208736
ICASE Report n° 98-48. Institute for Computer Aplication in Science and Engineering.
NASA Langley Research Center. Hampton Virginia (1998)

8. Goossens, S.; Tan, K.; Roose, D. An Efficient FGMRES Solver for the Shallow Water
Equations based on Domain Decomposition. Proc. 7'" International Conf. On Domain
Decomposition Methods in Scientific and Engineering Computing. Available
http://www.ddm.org (1993).

9. Chefter, J.G.;Chu, C.K.; Keyes, D.E.; Domain Decomposition for the Shallow Water
Equations. Available Proc. 9* International Conf. On Domain Decomposition Methods in
Scientific and Engineering Computing. Available http://www.ddm.org/DD9. (1998)

10. Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics 1. Springer Series in
Computational Physics. Springer-Verlag. (1988)

-896-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Application of Parallel Simulated Annealing and
CFD for the Design of Internal Flow Systems

Xiaojian Wang1 and Murali Damodaran1,2

1 Center for Advanced Numerical Engineering Simulations
Nanyang Technological University

Singapore, 639798
mxj wangQntu.edu.sg

" Associate Professor, School of Mechanical and Production Engineering
mdamodaranOntu.edu.sg

Abstract. Stochastic and deterministic optimization methods have their
own advantages and shortcomings when applied to the problem aerody-
namic shape design using computational fluid dynamics to evaluate the
objective functions that are being optimized. Stochastic optimization
methods such as Simulated Annealing and Genetic Algorithms appear to
be robust techniques for solving different kinds of hard design optimiza-
tion problems, such as discrete and non-convex problems. In this work
the problem independent sequential and parallel Simulated Annealing
implemented on a shared memory machine and applied to the problem
of optimum shape design of internal flow systems whereby the objective
functions that are to be optimized are analyzed using modern state-of-
the art computational fluid dynamics flow solvers. The algorithms are
parallelized using MPI libraries and the speedup and efficiency of the
computational problem on a shared memory multi-processor computer
examined. The results show that the parallel simulated annealing al-
gorithm using message passing library can be efficiently applied to the
problem of aerodynamic shape design optimization using computational
fluid dynamics. The methods also demonstrate promising applications
for solving complex multi-disciplinary design optimization problem.

1 Introduction

In the recent past, various optimization algorithms have been extensively applied
for solving complex engineering design problems, such as multi-disciplinary opti-
mization (MDO), which generally consists of discrete domain, non-convex space
and is multi-model. Deterministic methods such as gradient based, direct search
and sensitive analysis methods have been widely used in aerodynamic shape
design and MDO problems [1]. The best feature of gradient based methods is
that they are very efficient in searching for local minima of continuously dif-
ferentiable functions. Stochastic algorithms, including simulated annealing (SA)
and Genetic Algorithm (GA) are robust in searching for the global minimum of
smooth and non-smooth functions are easy to implement and does not require
gradient information. However stochastic design optimization method such as

897-

FEUP - Faculdade de Engenharia da Universidade do Porto

X. Wang and M. Damodaran

SA and GA takes a far greater number of objective function evaluations [2] than
that of deterministic methods to reach the global optima. Hence it is imperative
that the associated computational costs and time be reduced by using parallel
computing.

The main aim of current investigation is to address the speedup and ef-
ficiency of implementing a problem independent parallel Simulated Annealing
method exploiting the shared memory ccNUMA architecture of the SGI multi-
processor computer using the MPT vl.3 software, an implementation of the
Message Passing Interface (MPI) library optimized for the SGI Origin 2000 se-
ries of multiprocessor computer. The design of high speed internal flow systems
using compressible flow solvers based on modern state-of-the-art computational
fluid dynamics and simulated annealing is chosen as the test problem to illus-
trate the application of parallel computing technologies on the multi-processor
computer. Numerical studies of the internal flow systems design optimization
problems show that parallel SA methods can serve as suitable candidates for ob-
taining optimum aerodynamic shape design configurations and the use of these
parallel SA method can effectively reduce the wall-clock time in the calculation
of design process. Although the methods are being developed for a single disci-
plinary setting in this study, the efforts in principle supports and can be further
applied to complex MDO problems in a wide engineering area.

2 Sequential and Parallel SA Algorithms

Simulated annealing is a search of the solution space of a combinatorial opti-
mization problem, with the goal of finding a solution of global minimum cost[3].
In SA, the optimization problem is simulated as an annealing process analogous
to the situation when a metal is heated to a very high temperature to molten
states and then cooled (annealed) till it reaches a solid state. The natural pro-
cess which takes place in a slow cooling of the molten metal guarantee that the
structure of the metal reaches the crystal structure corresponding to a minimum
energy state. The final state depends on the cooling schedule. Comparing with
GA, one major difference is that SA possesses a formal proof of convergence
to global optima, although this proof relies on the use of a very slow cooling
schedule and sufficiently large initial temperature. A typical procedure of SA
consists of three major steps: a) moving from current solution to a new solution,
b) computing the cost function of new solution, and c) making a decision for
accepting or rejecting the new solution using given criteria. The procedure of
the basic sequential SA algorithm as outlined in Table 1, which have been used
widely for many different applications as outlined in Aarts and Korst[3], can be
programmed easily as the steps are simple and concise.

It is well known that the major disadvantage of SA stems from the the large
number computations that are necessary for evaluating objective functions. This
may not be a big problem if the objective functions are simple and easily eval-
uated. However if the objective functions require sophisticated computational
analysis methods such as CFD or finite element methods as is the case with en-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Vector and Parallel Processing - VECPAR'2000

Table 1. Simulated Annealing method

Standard SA procedure

Start loop (1) for given temperature Tk
Start loop (2) for searching new solution at Tk

with a reasonable length of search (L) obtain new solution and cost
function F AF = new cost - current cost
if AF < 0 or e-

AF/T > random{)
accept new solution and cost function F

end if
Continue loop (2)
Update TV--i-i = aTk- If convergence criterion is satisfied, terminate loop (1)

Continue loop(l)

gineering design problems, then it is important to seek ways to reduce the com-
putational effort by exploiting advances made in computer architecture. This has
motivated the development of algorithms which can reduce the computational
effort in the design process. One of the most widely used technique to speed up
SA is to implement the algorithm on parallel computer architecture. It has been
shown by Gallego et al.[4] that parallel implementation of SA not only results in
speedup, but also increases the chances of global minimization. Bhandarkar and
Machaka [5] states that there are three main parallelization strategies available
at present for SA. These are broadly classified as functional parallelism within
a move, control parallelism, and data parallelism.

In present work the strategy of multiple searches which can be classified as
control and data parallelism is introduced and implemented on the 32-processor
SGI Origin 2000 series of shared-memory multiprocessor computer. The divisions
algorithm of Aarts and Korst [3] which is a control parallelism strategy is carried ■
out by dividing the effort of generating a Markov main chain over the available
processors. The main chain is divided into p subchains of length Nsp = Ns/p,
where p is the number of processors and Ns is the length of the main chain.
Each processor works on its associated subchain, and continues the generation
of the subsequent subchain. The current subchain can be given as the outcome
of the previous trial of the preceding subchains obtained by the same processor
or found by choosing the best result from available processors. Table 2 outlines
the procedure implementing this algorithm and in the rest of this paper this
algorithm will be referred to as PSA1. This method is problem independent,
and efficient. However, with the decrease of the length Nsp, which corresponds
to the increase in the number of processors, the speedup will be reduced as
mentioned in Deikmann et al. [6] and Laarhoven and Aarts [8].

The PSA1 algorithm can be further improved by using the clustered method
in the lower temperature regions of the annealing process. Within the lower
temperature, the acceptance ratio can be decreased very fast, as mentioned in
Bhandarkar and Machaka [51. The clustered method is an efficient method which

-899-

FEUP - Faciddade de Engenharia da Universidade do Porto

X. Wang and M. Damodaran

Table 2. Parallel SA algorithm (PSA1)

PSAl Procedure

Initial multiple processors
Generate random seeds for each processor
Start loop (1) for given temperature Tk

Start loop (2) for searching new solution at T/t
set loop (2) length = L/p obtain new solution calculate cost
function F AF = new cost - current cost
if AF < 0 or e~AF/T > random{)

accept new solution and new cost function F
end if

Continue loop (2)
Choose the best cost function F and the solution from each processor,
each procesor starts from the collected solution.
Update Tk+i = aTk. If convergence criterion is satisfied, terminate loop (1)

Continue loop(l)

works well at lower temperatures and is implemented in the following manner.
The information on the objective function is gathered at the end of each search
step and the solution is chosen randomly based on the accepted cost function.
The acceptance ratio Rt is defined as the ratio of the numbers of the accepted
moves to the numbers of all of the search moves. The incorporation of these
modifications to PSAl results in the PSA2 algorithm whose implementation
is outlined in Table 3. It is worth noting that there are other methods which
have been introduced by different researchers, such as the speculative method of
Witte and Franklin [7] which has shown some promise for fine-grained multiple
processors but not for coarse-gained computer system. Another method is the
systolic method of Laarhoven and Aarts [8] which is also limited by the Nsp,
and it has been combined with other methods to implement parallel strategies.
In the present study, the parallel methods (PSAl and PSA2) are used as ba-
sic approaches for implementing the parallel SA in the design optimization of
aerodynamic shapes of nozzles and diffusers.

3 Implementation of Parallel SA on SGI Origin 2000
Computer Using MPT

The most widely used programming languages and libraries on parallel comput-
ers are High Performance Fortran (HPF), Parallel Virtual Machine (PVM)and
the Message Passing Interface (MPI). The HPF is still being developed improve
data parallelization. Both PVM and MPI system transparently handles mes-
sage routing, data conversion for incompatible computer architectures and other
tasks necessary for operations in a heterogeneous or a homogeneous computing
network. Although PVM was one of the earliest parallel software environment

-900-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Vector and Parallel Processing - VECPAR'2000

Table 3. Parallel SA algorithm (PSA2)

PSA2 procedure

Initial multiple processors
Generate random seeds for each processor
Start loop (1) for given temperature Tk

Start loop (2) for searching new solution at Tk
set the length of chain = L/p obtain new solution and cost
function F AF = new cost - current cost
if AF < 0 or e-

AF/T > randomO
accept new solution and cost function F

end if
if the acceptance ratio < Rt

Randomly gather the accepted solution from each processor.
Reset the length = L

end if
Continue loop (2)
Choose the best cost function F and the solution from each processor,
each procesor starts from the collected solution.
Update Tfc+i = aTk- If convergence criterion is satisfied, terminate loop (1)

Continue loop(l)

to be developed and which is also continually being improved, MPI has fast be-
come the industry standard for parallel software environment which is available
on most parallel computer platforms.

For the parallelization of SA in this study two parallel software environment
tools which were made available under the framework implementing the MPI li-
braries. One is LAM v6.1 [9], a parallel software tool and processing environment
for a network of independent computers, and heterogeneous computer networks
and developed by the Ohio Supercomputer Center at Ohio State University [9].
The other tool is the MPT vl.3 [10], which was developed by SGI as a com-
patible message passing tool on SGI machines. The MPI implementations used
is the MPT vl.3 which is fully compliant with the current MPI 1.2 specifica-
tion. Preliminary tests show that MPT vl.3 is more efficient than Lam v6.1 on
SGI IRIX 6.5 machine. More information and details on the MPI libraries and
parallel applications can be found in Pacheco[ll] and in Foster[12].

4 Optimum Shape Design of Internal Aerodynamic Flow
Systems

The application of parallel SA algorithms PSA1 and PSA2 and the CFD flow
solver which is used to calculate the objective functions are described in fol-
lowing sections in the design of optimal shapes of nozzles and diffusers which
are aerodynamic devices facilitating high speed internal flow systems commonly

■901 -

FEUP - Faculdade de Engenharia da Universidade do Porto

X. Wang and M. Damodaran

used in rockets, wind-tunnels, jet engines and large scale industrial applications
using jet flow technologies The design test problems are outlined briefly first and
then followed by presentation of computed results and discussions.

4.1 Diffuser Shape Design - Design Test Case 1

This test case is concerned with optimal shape design of an axisymmetric diffuser
for which the design flow field condition and the pressure distribution along the
centerline are defined. The aim is to find a shape of the diffuser which will satisfy
this design flow condition. The objective function which has to be minimized is
expressed in normalized form as follows:

F{X) = -K2[{P-Ptfdx, (1)
Pouo J

where Pt is the target pressure distribution and P is the initial or evolving
pressure distribution defined along the length of the diffuser center-line; p0 is
the density, UQ, P0 are stagnation flow conditions which are taken as reference
values for scaling flow quantities in internal flow simulations using CFD analysis
and X is the vector of design variables, and X = (xi,x2,...xn). The inflow
Mach number is supersonic at 1.5. Other pertinent details of this problem can
be found in Hoffman and Chiang [13]. This test problem is chosen because it is
a representative design problem where the objective function is non-smooth in
view of the presence of a a shock wave which is a flow discontinuity. To start
the design process the target pressure distribution or flow condition and a guess
of the initial starting shape of the diffuser is specified. The target pressure is
that defined for a diffuser which is generated by the following distribution of
cross-sectional area (S(X)) along the length of the diffuser:

S(X) = 1.398 + O.M9tanh(0.8X - 4). (2)

The initial shape of the diffuser is that of a conical frustum obtained by
connecting the radii at the inflow and outflow with a straight line. The starting
and target pressure distribution along the length of the diffuser are shown in Fig.
1(a).The corresponding shape of the starting and the target diffusers are shown
in Fig. 1(b). To initiate the design minimization process the nozzle shape is
defined in terms of design variables. The curve defining the shape of the diffuser
is parameterized by Berstein basic functions as outlined in Faux and Pratt[14]
and defined as follows:

Y=s-°w^ul{1-urir>- (3)

For this case the CFD analysis is based on the quasi-one-dimensional Euler
equations for inviscid nonlinear compressible flow which can be solved by the
finite-difference methods based on the Steger-Warming upwind scheme (first
order TVD). The governing equations and details of the numerical algorithm

■902-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Pro

Vector and Parallel Processing - VECPAR'2000

can be found in Hoffmann[13] which readers can consult and hence details of the
CFD methods are not repeated here.

The inverse design of the diffuser is carried out using parallel SA algorithms
PSA1 and PSA2. The diffuser shape is represented using eleven design variables
with blending functions defined by Eq. (3). The flow field corresponding to the
diffuser shape defined by Eq. (2) is computed using 51 uniformly distributed
points in the flow direction and for the specified design values and inflow condi-
tions to obtain the target flow conditions. The design inflow conditions are used
to calculate the flow field inside the starting shape(initial guess)of the diffuser
using the Euler equations. Then Parallel SA is used to minimize the objective
function until the desired shape of the diffuser is attained. By comparing the
final shape of the designed diffuser with the shape defined in Eq. (2) (i.e. the
shape corresponding to the target pressure distribution), it is possible to make
assessments on the effectiveness of the parallel SA.

4.2 Tunnel Wall Shape Design - Design Test Case 2

The second test case is concerned with the application of parallel SA and 2-
dimensional CFD analysis to design the shape of the lower wall of a converging
nozzle inside which there is high speed compressible flow. The initial shape of
the lower wall is a straight line and oriented like a wedge (see Fig. 2(a)). The
top wall is parallel to the direction of flow along the x-direction. The shape of
the bottom wall which looks like a wedge generates a strong reflective shock
wave between bottom and top walls, see Fig. 2(a). The objective of the design is
to re-design the shape of the lower wall so as to eliminate or weaken the shock
wave. Since it is not possible to have a priori knowledge of the type of target (or
desired) pressure distribution Pt corresponding to a pressure distribution which
does not create a shock at the lower wall, the knowledge from the basic theory
of gas-dynamics which states that a compressible flow a gradually turning wall
(compressive) can produce a weak shock forms the basis for the selection of the
target pressure distribution by computing the compressible flow past the lower
wall which is curved according to the equation y = x3°.

In this case, the objective function is defined as

F(X) = ~j(P-Ptfdx, (4)

where P0 is the pressure of the inflow. The integration of the difference be-
tween the target and design pressure distribution is calculated along the bottom
wall line where the shock effects are felt the strongest. The inflow Mach num-
ber is 2.2. The shape of the lower wall is matched using cubic splines[lo], with
continuity of function, its first and second derivative at the boundaries. Four
design variables are chosen for the design optimization namely two first deriva-
tives at the inlet and outlet boundaries, and two height parameters, y\ and yi
at xi = 5.0 and x2 = 8.0, respectively. Here the CFD method for solving the
Euler equations to evaluate the objective functions is based on an implicit high
resolution LU-SGS TVD scheme as outlined in Yoon et al.[16] and Yee et al.[17]

■903-

FEUP - Faculdade de Engenharia da Universidade do Porto

X. Wang and M. Damodaran

which readers can peruse for details. A structured grid of 101x40 points is used
for calculating the compressible flow field using these CFD methods for each
evolving design shape till the final shape is attained.

4.3 Nozzle Shape Design - Design Test Case 3

The final test case is concerned with the optimal design of a nozzle shape which
maximizes the thrust of the nozzle. As nozzles are used in many industrial appli-
cations from rocket engines, water-jet cutting, fire-man's hose, the computation
of the thrust requires the integration of the forces induced by fluid mechanics
and this involves an integration of the pressure in the direction normal to the
flow direction. The objective function is defined as

F{X) = j(P/P0)dy.

The integration is calculated along the surface of nozzle wall. The flow field
is calculated using the CFD method used in case 2 except that for this case
the full Navier-Stokes Equations are used for the CFD analysis. Here the CFD
method for solving the Navier-Stokes equations to evaluate the objective func-
tions is based on the same scheme as outlined in Test case 2. A structured grid
of 101x40 girds with clustered grids near the nozzle wall surface is used for the
CFD analysis. The inflow Mach is 4.84, the values of the radius are 0.5m at
the inlet cross section and 1.0m at the exit. The length of nozzle is 2.52m. The
curve defining the shape of the nozzle is defined using a cubic spline. Two design
variables, namely inlet expansion half angle and outlet expansion half angle of
the nozzle wall, is adopted in the nozzle optimization.

5 Results and Discussions

5.1 Results from Design Test Case 1

Design Test case 1 forms the basis for a comparative study on the performance of
using the parallel SA methods, i.e. PSA1 and PSA2 which can be considered as
user-written parallel codes using MPT library functions. The SA parameters are
chosen as follows: the initial cooling temperature is set to a value at which the
initial cooling acceptance ratio is greater than 0.95; the length Ns for the cooling
scheme is first tested and taken to be as short as possible for a single processor;
a constant cooling scheme, Tk+i = aTk, is chosen with a = 0.1. Based on the
experience gained in applying SA to aerodynamic design problems the value for
a ranges between 0.30 and 0.05 [18]. The parameter Rt has a value ranging
between 0.4 and 0.6. As many multi-processors on the SGI machine are used for
the implementation of the PSA1 and PSA2 algorithms, the termination criteria
to stop the program is defined in such a way that iteration is terminated if the
objective function reaches a value lower than Fmin = 1.4E-4 on the collected
result of multiple processors.

■904-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Vector and Parallel Processing - VECPAR'2000

On Fig. 1(a) a comparison is made of the target pressure distribution and the
final pressure distribution achieved by inverse design process from the starting
pressure distribution. Also shown on this figure is the starting pressure distribu-
tion which corresponds to the starting shape of the diffuser. Fig. 1(b) shows the
initial shape and compares the final optimized shape of the diffuser (attained
by inverse design) with the shape of the diffuser corresponding to the target
pressure distribution specified for this inverse design problem i.e. Eq. (1). The
solid lines in these figures represent the targets which the final designs ought to
converge to after the application of parallel SA algorithms PSA1 and PSA2. It
can be seen from these figures that parallel SA has done a good job in carrying
out the inverse design problem.

Fig. 1(c) shows the convergence histories (for processor No. 0 only) of the
objective function as it gets minimized from its initial values to the final de-
signed value which should correspond to zero as a result of using the parallel SA
algorithms PSA1 and PSA2 on 1 to 32 processors. The plots show the variation
of the objective function value vs. the number of iterations for the three cases
corresponding to the application of the standard SA (SSA) and the parallel SA
(PSA1 and PSA2). It can be seen that the number of iterations to reach the
final optimal design shape according to the termination criteria reduces ten-fold
if MPT is used as opposed to the sequential parallelization option on the SGI
machine.

Tables 4 and 5 show some measures of performance for the implementation
of parallel SA on the tightly coupled processors which make up the 32-processor
SGI Origin 2000 machine. In these tables p refers to the number of processors
that are used at one time for doing the computational task, Mp is the number
of evaluations of objective function, and tp represents the wall-clock time for
the computational task, Sp and Spi are the realistic and ideal speedup (without
communication overhead of multiple processors), Ep and Epi are the realistic effi-
ciency and ideal efficiency, respectively. It appears that the parallel SA algorithm
PSA1 shows efficient speedups if 1 to 16 processors are used in the computational
task and also registers a reduction in the wall clock time from 4 to 0.55 hours.
This also shows that using 32 processors will result in only marginal benefits as
the wall clock time has reduced to 0.47 hours. It can be seen from these results
that the number of function evaluation decreases for each processor if more pro-
cessors are used in the computation. It can also be seen from Table 5 that the
parallel SA algorithm PSA2, reduced the value of Mp from over 6000 on single
processor to around 500 on 32 processors.

Tables 4 and 5 compare the wall clock time for PSA1 and PSA2 using different
numbers of processors in the computation. It can be concluded that the speedup
and efficiency using PSA2 is generally better than those of using PS Al. However
the communication overhead, obtained by subtracting realistic curve from ideal
curve of PSA2, Epi - Ep, is higher than PSA1.

-905-

FEUP - Faculdade de Engenharia da Universidade do Porto

X. Wang and M. Damodaran

5.2 Results of Test Case 2

Based on the results of Test Case 1, the parallel SA algorithm PSA2 is used
for the minimization of the objective function of Eq. 4. This is a more intensive
computation than test case 1 because this is a 2-dimensional problem and solves
the 2-dimensional Euler equations for CFD analysis. For this design calculation,
some of the simulated annealing parameters appearing in the cooling schedule
are changed i.e. a = 0.15 and the tolerance criteria is set at Fmin = 4.0E-2.
Table 6 shows that the measures of performance such as speedup and efficiencies
attained by using 1, 4 and 8 processors for this calculation. It can be seen that
the number of evaluations of the objective functions decreased from 653 on single
processor to 185 on 4 processors and to 77 on 8 processors. The initial shape of
the lower wall of the nozzle and the computed flow field which contains a strong
oblique shock wave which is reflected off the top wall can be seen in Fig. 2(a)
which shows the contours of the normalized pressure in the flow field. This flow
field is the starting flow field condition used to initiate the design process so that
the algorithm PSA2 can find the shape of the lower wall which will eliminate
the shock wave for the same flow conditions. It can be seen from Fig. 2(b) that
the PSA2 algorithm has designed an optimal lower wall shape which has a close
agreement with the target flow conditions. Fig. 2(c) shows the contours of the
normalized pressure in the flow field corresponding to the flow past the optimized
lower wall shape for the same flow conditions. It can been seen that the shock
wave has been eliminated from the flow field. The convergence history of the
optimization by PSA2 algorithm on 1, 4 and 8 processors is shown in Fig. 2(d).

Table 4. Measures of Performance on SGI, Design Test Case 1 Using PSA1

P Mp tp(hour) Sp{ti/tp) sp i(M,/Mp) EP(Sp/p) Epi(Spifp)

1 6161 4.00
2 4040 2.88 1.39 1.53 0.695 0.765
4 1740 1.36 2.94 3.54 0.735 0.885
8 1300 0.984 4.00 4.74 0.500 0.595
16 756 0.549 7.29 8.15 0.456 0.509
32 661 0.477 8.39 9.32 0.262 0.291

5.3 Results of Test Case 3

Design Test Case 3 is the most computationally intensive of all the three cases
considered in this study in view of the fact that this is constrained design
problem and the objective function is evaluated using the CFD solver solving
the Navier-Stokes equations. The PSA2 algorithm is used for the optimization
and the termination criteria for the convergence is set such that the residual
\F(X)n+i - F(X)„\ < 0.001 is satisfied. The a for the cooling schedule is set to

•906-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Vector and Parallel Processing - VECPAR'2000

Table 5. Measures of Performance on SGI, Design Test Case 1 Using PSA2

p Mp tp(hour) Sp(t\/tp) Sp i(Mi/Mp) Ep{Sp/p) EP,{Spi/p)

1 6161 4.00
2 3697 2.72 1.47 1.66 0.733 0.83
4 1519 1.24 3.24 4.06 0.810 1.02
8 1134 0.898 4.45 5.43 0.556 0.679
16 595 0.468 8.57 10.4 0.535 0.650
32 562 0.439 9.12 11.0 0.285 0.344

Table 6. Measures of Performance on SGI, Design Test Case 2 Using PSA2

p Mp tp(hour) Sp(h/tp) Spi(MifMp) Ep(Sp/p) Epi(Spi/p)

1 653 35.71
4 185 12.41
8 77 5.4

2.88
6.61

3.53
8.4

0.719
0.826

0.883
1.02

Table 7. Measures of Performance on SGI, Design Test Case 3 Using PSA2

p Mp tp{hour) Sp(h/tp) SPi(Mi/Mp) EP(SP/P) Epi(Spi/p)

1 67 20.95
4 21 6.73 3.11 3.19 0.778 79.8
8 19 6.17 3.40 3.53 0.425 0.441

Fig. 1(a). Pressure distribution Fig. 1(b). Diffuser contours

-907-

FEUP - Faculdade de Engenharia da Universidade do Porto

X. Wang and M. Damodaran

l'i J I
_j ■ ..i

3h~M,

0 100 200
el Converge

300
tyy PSA2

400
Oft 33

500 600 70

s i .
~\L -

H —V -4„ A, l\ A, L
100 ?00 300 400

Fig. 1(c). Convergence history

8 -

7 -

6 -

5 -

0 2 4 6 8 10
X

Fig. 2(a). Initial flow field

8 *

6

5

3 /^k
2 /^gilll 1

/^/^y%Z&Z^
■,....... <f .<r\<~r^T^. . .

Fig. 2(b). Pressure distributions Fig. 2(c). Optimized flow field

>) Corvergefics History on single Of

H^iliiiLjj.,, :
0 10O 200 300 400 500 600 700

«) Converoence History on 4 D'ocessorj

"xJLnilil , ■■
0 20 40 SO 80 100 120 HO 160 180 200

iij Converger CB ni si cry on B processors

:XA/A)A,A j
<0 50

Fig. 2(d). Convergence history- Fig. 3(a). Initial flow field

•908-

VEC PAR '2000 - 4th International Meeting on Vector and Parallel Processing

Vector and Parallel Processing - VECPAR'2000

1 5

13 4 50673 !
12 3 5-462 ■
11 3 04-51 i
10 2 46382 !
9 1 7325 i

r 0 75
6 065 '
5 0 55 i

> 3 035 i
2 0 25 j
1 0 15 ;

i

05

°. i , . , , =^—
05 1

X
1.5 2

a] Convergence Tsiofy or. s-ngfe p'

Fig. 3(b). Optimized flow field Fig. 3(c). Convergence history

be 0.25. Table 7 shows that the measures of performance such as speedup and
efficiencies attained from using 1, 4 and 8 processors for this calculation. Fig.
3(a) shows the computed local pressure contours of the original nozzle shape
which is delivering a certain amount of thrust. This flow field corresponds to the
starting flow field for the optimization studies. Fig. 3(b) shows the computed
flow field corresponding to the optimized nozzle shape which has been designed
from the original shape to satisfy the thrust delivery constraint. Fig. 3(c) shows
the convergence histories for Case 3. This case shows that high speedup also
can be achieved, which is the same as that in the inverse design optimization on
Case 1 and 2.

6 Conclusions

In conclusion it can be observed from the design test cases 1,2 and 3 that as the
number of design variables pertaining to an optimization problem reduces (11
design variables for case 1 to 4 design variables for Case 2 to 2 design variables for
case 3) fewer number of processors are required for maintaining higher efficiency.
The three test cases show that with the increase in the number of design vari-
ables for a design problem, larger iVs value is needed i.e. the length of the Markov
chain thereby suggesting that more processors can be used efficiently in design
calculation to reduce wall-clock time. The parallel SA approaches implemented
in this investigation with applications in the shape designs of internal flow using
CFD have demonstrated that wall-clock times can be reduced considerably by
reduction in the number of evaluations of objective function for each processor.
The PSA2, which couples the division and cluster methods, performed slightly
better than PSA1, which uses division method only. Although the speedup lim-
itation exists while more processors are used, a reasonable number of processors
can be chosen according to the efficiency desired by the designer. The case stud-
ies demonstrate promising application in more complex problems, such as MDO
problems, which are time-consuming when solving using analysis methods for

•909-

FEUP - Faculdade de Engenharia da Universidade do Porto

X. Wang and M. Damodaran

coupled multi-disciplinary engineering problems. Further studies including the

use of adaptive SA and hybrid optimizer, will be carried out in the near future
to enhance the performance of current parallel SA.

References

1. Sobieszczanski-Sobieski, J., Haftka, R.T.: Multidisciplinary Aerospace Design Op-
timization: Survey of Recent Developments. AI A A Paper 96-0711, 34th Aerospace
Sciences Meeting and Exhibit, Reno, Nevada (1996)

2. Frank, P.D., Booker, A.J., Caudell, T.P., Healy, M.J.: A Comparison of Opti-
mization of Optimization and Search Methods for Multidisciplinary Design. AIAA
Paper 92-4827 (1992)

3. Aarts, E., Korst J.: Simulated Annealing and Boltzmann Machines, A Stochastic
Approach to Combinatorial Optimization and Neural Computing. John Wiley and
Sons (1989)

4. Gallego, R.A., Alves, A.B., Monticelli, A.A., Romero, R.: Parallel Simulated An-
nealing Applied To Long Term Transmission Network Expansion Planning. IEEE
Transactions on Power Systems, Vol. 12, No. 1.(1997)

5. Bhandarkar, S.M., Machaka, S.: Chromosome Reconstruction from Physical Maps
Using a Cluster of Workstations. Journal of Supercomputing, Vol. 11, (1997) 61-87

6. Diekmann, R., Luling, R., Simon, J.: Problem Independent Distribution Simulated
Annealing and its Applications. Lecture Notes in Economics and Mathematical
Systems 396, Applied Simulated Annealing, Springer-Verlag (1993)

7. Witte, E.E., Franklin, M.A.: Parallel Simulated Annealing Using Speculative Com-
putation. IEEE Transactions on parallel and distributed systems, Vol. 2, No. 4
(1991) 483-493

8. Laarhoven, P.J.M. van, Aarts, E.H.L.: Simulated Annealing: theory and applica-
tions. Norwell, MA, U.S.A., Kluwer Academic Publishers (1987)

9. MPI Primer/Developing with LAM. Ohio Super computer Center, The Ohio State
University (1996)

10. Message Passing Toolkit: MPT Programmer's Manual. Document Number 007-
3687-002, SGI Inc. (1999)

11. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann Publishers,
Inc. San Francisco, California (1997)

12. Foster, I.: Designing and Building Parallel Programs. On-line book, www —
unix.mcs.anl.gov./dbpp/, also published by Addison-Wesley Publishing (1995)

13. Hoffmann, K.A., Chiang, S.T.: Computational Fluid Dynamics For Engineers. A
Publication of Engineering Education System, Wichita, Kansas (1993)

14. Faux, I.D., Pratt, M.J.: Computational Geometry for Design and Manufacture.
Ellis Horwood Limited Publicashers (1979)

15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in Fortran: The Art of Scientific Computing. Second Edition, Press Syndicate of
University of Cambridge (1997)

16. Yoon, S., Jameson, A.: Lower-Upper Symmetric-Gauss-Seidal method for the Euler
and Navier-Stokes Equations. AIAA Journal. Vol 26, No.9, (1988) 1025-1026

17. Yee, H.C., Harten, A.: Implicit TVD Schemes for Hyperbolic Conservation Laws
in Curvilinear Coordinates. AIAA Journal, Vol. 25, (1987) 266-274

18. Aly, S., Marconi, F., Ogot, M., Peiz, R., Siclari, M.: Stochastic Optimization Ap-
plied To CFD Shape Design. AIAA paper 95-1647 (1995)

■910-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Parallel Algorithm for Fast Cloth Simulation*

Sergio Romero, Luis F. Romero, and Emilio L. Zapata

Universidad de Malaga, Dept. Arquitectura de Computadores, Campus Teatinos,
29071, Malaga, Spain,
ezapata8ac.uma.es

Abstract. The computational requirements of cloth and other non-rigid
solids simulations are high and often the running time is far from real
time simulations. In this paper, we present an efficient parallel solution
of the problem, which is a consequence of a wide analysis of the data
distributions and the parallel behavior of some different iterative system
solvers and preconditioners. Our parallel code combines data parallelism
with task parallelism, achieving a good load balancing and minimizing
the communication cost. The execution time obtained for a typical prob-
lem size, its superlinear speed-up, and the isoscalability shown by the
model, will allow to reach real-time simulations in sceneries of growing
complexity, using the most powerful parallel computers

1 Introduction

Cloth and flexible material simulation is an essential topic in computer animation
of realistic virtual humans and dynamic sceneries. Xew emerging technologies,
as interactive digital television and multimedia products make necessary the de-
velopment of powerful tools able to perform real time simulations. There are
many approaches to simulate flexible materials. Geometrical models are usually
considered the fastest but they require a high degree of user intervention, mak-
ing them unusable for interacting applications. In this paper, a physically-based
model, that provides a reliable representation of the behavior of the materials
(e.g. garments, plants), has been chosen. In a physical approach, clothes and
other non-rigid objects are usually represented by interacting discrete compo-
nents (finite elements, springs-masses,patches) each one numerically modeled by
an ordinary differential equation (1), where x is the vector of positions of the
masses M. The derivatives of x, are the velocities x = v and the accelerations x.

Also, in most energy-, forces- or constraints-based formulations, equations con-
tain non-linear components, that are typically linearized by means of a Newton
method. The use of explicit integration methods, such as forward Euler and
Runge-Kutta, results in easily programmable code and accurate simulations [3],

* Candidate to the Best Student Paper Award

-911 -

FEUP - Faculdade de Engenharia da Universidade do Porto

and have been broadly used during the last decade, but recent works [1] demon-
strate that implicit methods overcome the performance of explicit ones, assuming
a non visually perceptible lost of precision. In the composition of virtual scener-
ies, appearance, rather than accuracy is required, so, in this work, an implicit
technique, backward Euler method, has been used. In section 2, a description of
the models used and the implementation technique for the implicit integrator is
presented. Also, the resolution of the resulting system of algebraic equations by
means of the Conjugate Gradient method is analyzed. In section 3, the parallel
algorithm and the data distribution technique for a scenery is shown. Finally, in
section 4, we present some results and conclusions.

2 Implementation

To create animations, a time-stepping algorithm has been implemented. Every
step is mainly performed in three phases: computation of forces, determination
of interactions and resolution of the system. The iterative algorithm is shown
below:

do {

computeForcesO ;
collisionDetectionQ;
solveSystemO ;
updateSystemO ;
time = time + timeStep

}while(time<FinalTime)

The updateSystem procedure computes the new state, made up of the position
and velocity of each element, calculated from the previous one. computeForces,
collisionDetection and solveSystem stages are described below.

2.1 Forces

Forces and constraints are evaluated on every discrete element in order to com-
pute the equation coefficients for the second Newton's law. Our model considers
both spring-mass discretization of 2D-3D objects, and triangles patches for the
special case of 2D objects like garments. The particular forces considered are:
Visco-Spring forces mapped in the grid for the former model; and Stretch, Shear
and Bend forces for the later. In both cases, gravity and air drag forces have been
also included. The backward Euler method approximates the second Newton law
by the equation (2) in the k-th time step,

Av = At-M-v-f{xk+uvk+l) = At-M-l-f{xk+Ax,vk + Av) (2)

This is a non-linear system of equation which has been time-linearized by one
step of the Newton method as follows:

fk+i = f(xk+i,vk+l) = fk +
9/

dx
Ax +

k
Av (3)

■912-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

being Ax = At(vk + Av). An energy function Ea for every discrete element a
is analytically described; the forces acting on particle i are derived from ft =
X^Q -dEa/dxi and the arising coefficients from the analytical partial derivations
in equation 3 has been coded for its numerical evaluation. All above gives a large
system of algebraic linear equations with a sparse matrix of coefficients.

2.2 Collisions

To detect possible interactions and forbidden situations, like colliding surfaces
or body penetrations, we have used a hierarchical approach based on bounding-
boxes. In these cases, we introduce additional forces to maintain the system in
a legal state. This forces will be included as described in the previous section.
In the case of cloth simulation, the self-collision detection and the human-cloth
collisions may be critical and the computational cost can be extremely high. [4]

2.3 Solver

In the solveSystemprocedure, the unknowns Av are computed. As stated above,
implicit integration methods requires the resolution of a large, sparse linear
system of equations that must be simultaneously fulfilled. An iterative solver, the
preconditioned conjugate gradient method, has proven to work well, in practice.
This method requires relatively few, and reasonably cheap, iterations to converge
[1]. The choice of a good preconditioner can result in a significant reduction of
the computational cost in this stage. In this work, five preconditioners have been
studied. We have tested every preconditioner for a wide set of sceneries. In every
case, Block-Jacobi has shown to be the fastest although the required number of
iteration for a given tolerance is larger than that in the incomplete factorization
techniques. In table 1, the number of iterations and the elapsed execution time
for each preconditioner of an example simulation is presented. We have chosen
the Block-Jacobi preconditioner for our algorithm, not only for the execution
time but also for its better parallel behavior [2].

Table 1. Elapsed Time and Number of Iterations of CG

Preconditioners Number of iterations Time

Jacobi 15022 28.118
Block-Jacobi 10001 21.632

(L + D)D~1(D + U) 5298 22.240
Incomplete-LU 4326 24.651

I-Cholesky 4319 25.483

■913-

FEUP - Fttculdade de Engenharia da Universidade do Porto

3 Parallelization

The parallelization of the model has been performed on a SGI Origin2000, a
XUMA multiprocessor architecture. Automatic parallelizing tools are not able to
extract enough parallelism from this kind of problems. We have used a SGI spe-
cific cache-coherent shared memory programming model, and a data parallelism
strategy. Task parallelism has been also considered for the collision detection
stage. The distribution of the objects in a scenery between the processors is per-
formed using a proportional rule based on the number of particles/triangles. The
redistribution and reordering of the particles/triangles inside an object among
the assigned processors have been performed using domain decomposition meth-
ods. In figure 1, the non-zero coefficient of the system matrix for three differ-

\

Fig. 1. Coefficient matrices for original, MRD, and stripped ordering.

ent reordering of the particles/triangles is shown. It can be observed that the
stripped ordering results in a thin banded diagonal which will result in the
parallel distribution with less communication expenses. The Multiple Recursive
Distribution (MRD), has more locality, which will result in a better cache us-
age. The choice of the method will depend of the scenery and the computational
platform.

3.1 Solver

The PCG algorithm has been parallelized following a well-known strategy in
which the successive parts of the vectors and the properly aligned rows of
the matrices are distributed among the processors. Using this scheme and the
Chronopoulos and Gear variant of PCG [2], very few messages and synchro-
nization points are required along the iterative process. The parallelization of
the operations have been performed by using the data distribution previously
computed for the forces calculation stage. In this paper, an innovative strategy
for the parallel implementation of the PCG algorithm for cloth simulation is
proposed. In our scheme, global synchronization points (GSPs) and message ex-
changes (MEs) among the processors in the iterative process can be handled in

-914-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

three different ways. First, GSPs and MEs can be eliminated when they are not
required (for example, when two sets of processors are solving the corresponding
subsystems for separate pieces of clothes). In this case, the two subsystem be-
come independent, and the inherent parallelism of different elements in a scenery
is considered. Second, GSPs and MEs are used in the usual way. This will be
the general case for the parallelization inside a garment. A third case has been
tested, keeping every GSP in the algorithm, but leaving the messages to be sent
without any local synchronization between neighbour processors. Although the
number of iterations usually increases, the simulation time has been reduced in
about a 10%. An heuristic to recover the system, if any of the mentioned strate-
gies fails has also been considered. We are working on a fourth model which will
separate the convergence processes between the different processors working on
the same piece of cloth.

4 Results and Conclusions

In figure 2, the execution time, in seconds (excluding the collision detection
phase), of one second of simulated time and the speed-up of two example models
is shown. These results has been obtained using R10000-250Mhz processors. The
first model corresponds to a flag and the second to a table cloth (figure 3) (both
model are under windy conditions). A real time simulation is observed for the
former model using six processors. The speed-up of the second and more complex
model shows a superlinear behavior with up to four processors, mainly due to the
memory hierarchy (with n processors the number of internal registers and the
capacity of the cache are n-times higher). These, and other preliminary results
has been considered to extract several conclusions.

The use of more recent computers and a higher number of processors for
models with more particles /triangles will allow real time simulations, taking
into account the isoscalability shown in our preliminary results. The scenery
complexity, considering interaction between several objects will be improved as
the speed of the microprocessors increases.

r V

Fig. 2. Time and Speed-UP of two different simulations

■915-

FEUP - Faculdade de Engenharia da Universidade do Porto

References

1. Baraff. D., Witkin A.: Large Steps in Cloth Simulation. In Michael Cohen, editor,
SIGGRAPH 98 Conference Proceeding, Annual Conference Series, pages 43-54.
ACM SIGGRAPH, Addison Wesley, July 1998.

2. Dongarra. J., Duff, I.S., Sorensen, D.C., Van der Vorst, H.A.: Numerical Linear
Algebra for High-Performance Computers Software, Environments and Tools series.
SIAM, 1998.

3. Volino, P., Courchesne, M., Thalmann, N.: Versatile and efficient techniques for
simulating cloth and other deformable objects. Computer Graphics, 29 (Annual
Conference Series):137-144, 1995.

4. Volino, P., Thalmann, N.: Collision and Self-collision detection: Efficient and Robust
Solutions for Highly Deformable Objects Computer Animation and Simulation95:
55-65. Eurographics Springer-Verlag, 1995.

ifc-f

Fig. 3. Several frames from a simulation of a table cloth under windy conditions

■916-

VECPAR '2000 - 4 th International Meeting on Vector and Parallel Processing

Parallel Approximation to High Multiplicity
Scheduling Problems via Smooth Multi-valued

Quadratic Programming*

Maria Serna and Fatos Xhafa

Department of LSI
Universität Politcnica de Catalunya

Campus Nord, C6, Jordi Girona Salgado, 1-3
08034-Barcelona, Spain

Email: {mjserna,fatos}@lsi.upc.es

Abstract. We consider the parallel approximability of two problems
arising from High Multiplicity Scheduling problems, namely the Un-
weighted Model with Variable Processing Requirements and the Weighted
Model with Identical Processing Requirements. We first show a parallel
additive approximation procedure to a subclass of Multi-valued Quadratic
Programming, called Smooth Multi-valued QP, that is defined by impos-
ing certain restrictions on the coefficients of the instance, and then we
use this procedure to obtain parallel approximation to dense instances of
the two problems mentioned above by observing that dense instances of
these problems are modeled by Smooth Multi-valued QP. The dense in-
stances of the problems considered here are defined similarly as for other
combinatorial problems in the literature. For such instances we can find
in parallel a schedule whose completion time is at most (1 + e) times the
minimum schedule and it schedules at least (1 — e) of jobs of any type.

1 Introduction

In High Multiplicity Scheduling Problems the jobs are partition into groups (or
types) and in each group all the jobs are identical. The number of jobs of a certain
type is called the multiplicity of that type. The goal is to find a schedule that
minimizes a specified parameter such as completion time, lateness, tardiness,
etc. (see, e.g., [6] for definitions and known results on different subclasses of the
problem.) Multiplicity Scheduling Problems, in their general form, are NP-hard.
In fact, the problem remains NP-hard even for the simple case where there is
only one job of each type, there are two identical machines released at time
zero, having processing capacity n (see, e.g. [4]). However, several subclasses of
interest are obtained by restricting to the model where all job types have the
same processing requirements. Among others, there is the subclass of Unweighted
Model with Variable Processing Requirements and Weighted Model with Identi-
cal Processing Requirements. In [5] were given polynomial time algorithms to the

* This research was partially supported by ALCOM-FT (IST-99-14186) and CICYT
project TIC1999-0754-C03.

■917-

FEUP - Faculdade de Engenharia da Universidade do Porto

problems by modeling them as Convex Separable QP. (Even strong2 polynomial
time algorithms are known [6] for the case of a single machine.) To the best of
our knowledge the parallel approximability of the problems has not been con-
sidered previously. Unfortunately, the algorithm of [5] cannot be efficiently par-
allelized, unless P=NC, since it is based on solving convex-separable quadratic
programs which are shown even non-approximable in parallel [14]. We will limit
ourselves to those instances of the abovementioned problems that are "dense."
The definition of the dense instances is done similarly as for other combinatorial
optimization problems in the literature [3, 2, 9, 8, 7]. Such instances have min-
imum completion time i?(n2) and satisfy some restrictions on the weights, the
released times as well as on the processing times of the jobs. For dense instances
we can find in parallel a schedule of jobs into machines whose completion time
is at most (l+e) times the minimum schedule and it schedules at least (1 -e)rij
jobs for any group of jobs of type j, j = 1,..., n.

We obtain the result by showing first a parallel additive approximation pro-
cedure to a subclass of Multi-valued Quadratic Programming, called Smooth
Multi-valued QP, that is defined by imposing certain restrictions on the coeffi-
cients of the instance, and then we use this procedure to obtain parallel approx-
imation to dense instances of the two problems mentioned above by observing
that dense instances of these problems are modeled as Smooth Multi-valued QP.

The Smooth Quadratic Programming (Smooth QP) in 0/1 variables was first
defined by Arora et al. [3] by imposing restrictions on the magnitudes of the co-
efficients appearing in the instances of the problem. Later on, this subclass was
extended, in the same spirit, to c-Smooth QP by Arora et al. [2]. Both Smooth
QP and c-Smooth QP were shown to have additive approximation procedures
in polynomial time, i.e., procedures that find in polynomial time approximate
solutions whose measure is within an additive error from the optimum mea-
sure [3, 2]. Interestingly, there is a close relation between smooth instances of
QP and dense instances of several combinatorial optimization problems. Indeed,
it was shown in [3, 2] that many combinatorial optimization problems can be
casted by quadratic programs and the QPs corresponding to their dense in-
stances are smooth or c-smooth. From this connection were obtained Polynomial
Times Approximation Schemes for dense instances of several NP-hard problems,
including Max CUT, Max fcSAT, Linear Arrangements Problems, etc.

The approximability of Smooth QP has been also considered in the parallel
setting [15] where it was proven that the scheme of [3] can be also done in par-
allel. It should be mentioned, however, that the Smooth QP considered in [3, 2]
are in 0/1 variables. Clearly, a more vast subclass of QP is that defined in multi-
valued integer variables, we call this class Smooth Multi-valued QP (Smooth
MQP). We extend the result on Smooth QP in 0/1 variables to Smooth Multi-
valued QP, by showing that there is a parallel additive approximation procedure
to the instances of the problem. The extension to the multi-valued case is done
by reducing in NC the instance of QP to an instance of LP in packing/covering

A strongly polynomial time algorithm runs in polynomial time whenever the arith-
metic operations can be done in polynomial time

■918-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

form whose near-optimal solution can be found in NC through the algorithm of
Luby and Nisan [10] and then the fractional solution is rounded to an integer
one.

The paper is organized as follows. In Section 2 we formally define the prob-
lems used through the paper and briefly recall some known techniques that we
will make use of. The approximation procedure of Smooth Multi-valued QP is
given in Section 3 and in Section 4 we apply the approximation procedure on
two problems arising from High Multiplicity Scheduling. We conclude with some
open questions.

2 Preliminaries and Definitions

Let us give the definition of the Smooth Multi-valued QP.

Definition 1 (Smooth MQP). Let ,4 = (a^) be an n x n matrix, W = (wij)
an m x n matrix, b an n-vector and d an m-vector, over rationals and a a rational.
Multi-valued Quadratic Programming (Multi-valued QP) is

min J2 CijXiXj + £ M, + a
s.t.

Wx > d (1)
0 < Xi < at, 1 < i < n
Xi integral, 1 < i < n .

An instance of Multi-valued QP is called smooth if a^- are 0(1), b{ are3 0 or
0(n), a is 0 or 0(n2) and iuy are 0(1). The entries of W and d are non-negative.

The definition of Smooth MQP intents to capture subclasses of the Multi-valued
QP problem that represent advantages with respect to the approximability.
Clearly, the imposed conditions restrict the problem, yet Smooth MQP will
result strong enough to cast instances of interest for several problems.

In proving the result we will make use of the following known techniques.
The first one is a standard technique for the estimation of the sum of n numbers
by random sampling (see, e.g., [11]).

Lemma2 (Sampling Lemma). Let {aj}f=1 be a set ofn numbers, where each
a* is 0(1). Let p = J27=i a* ^e their sum. If we pick uniformly at random a subset
of s = 0(logn/e2) of a^ 's and compute their sum q, then with high probability,
i.e., with probability at least 1 — 0(l/n), we have that p — en < qn/s <p + en.

The second technique that we will use is the Randomized Rounding in NC by
Alon and Srinivasan [1] to a subclass of linear programs. This can be seen as
a parallel counterpart of the Randomized Rounding of Raghavan and Thomp-
son [13] and Raghavan [12] that work in the sequential setting. Additionally, the
3 Some of the 6,'s as well as a may not appear in the objective function, i.e., they are

equal to 0.

■919-

FEUP - Faculdade de Engenharia da Universidade do Porto

scheme of Alon and Srinivasan can deal with the more general case of Packing In-
teger Programs (PIPs, see definition below), namely the ones with multi-valued
variables. Their result is expressed in terms of the Raghavan's result, which
states, informally, that if v* is the optimal fractional value of the PIP then an
integral feasible solution to the PIP can be found such that its objective function
value is v' = v*(l — 6), for a small 5 > 0.

Alon and Srinivasan's Rounding Scheme. This Rounding Scheme applies to the
class of Packing Integer Programs (PIP's).

Definition3. A Packing Integer Program is to maximize qTx subject to Mx <
p where M € [0, l]mxn, p is an m-vector, and q is an n-vector such that the
entries of p and q are non-negative rationals, with the integrality constraint on
variables Xj S {0,1,..., dj}\ some of dj could be also infinite.

Essentially, the technique starts from a fractional solution of the linear pro-
gram and shows how to do the rounding efficiently in NC. Their result is sum-
marized in the next theorems.

Theorem 4 [1]. Given an instance of PIP, if the right hand sides bi are con-
stants bounded by 0(log(m + n)) than it can be approximated in NC to within a
(l+o(l)) factor of the sequential bounds of [12].

There are applications, however, in which simply an integer feasible solu-
tion of the PIP might be required. In such a case the following version of the
above theorem can be applied. Note that in this case we lose the "reasonable"
performance guarantee of the feasible integral solution.

Theorem 5 [1]. For any constant c > 1, PIPs can be approximated in NC to
within 1/c factor of the sequential guarantee of [12].

Note also that in both cases the integer feasible solution is found determin-
istically in NC.

3 Approximating Smooth Multi-valued Quadratic
Programming

In this section we show an NC additive approximation procedure that, given
in input an instance of Smooth MQP, finds a feasible solution to the problem
whose measure is within an additive error from the optimum value, i.e., g(x) <
g(x*) + en2, where g is the objective function, n is the number of variables and
£ a positive constant. As a corollary, when the optimal value g(x*) of the MQP
instance is l?(n2), we obtain an (1 + ^-approximation for any (constant) value
of e, thus the problem has an NC Approximation Scheme. In particular, we
obtain NCASs for instances of Positive Smooth MQP since for such instances
g(x*) = fl{n2).

We prove the following theorem.

■920-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Theorem 6. Given an instance of Smooth MQP such that Wx > d, 0 < xi < ct,
1 < i < n, is feasible and a fixed e, we can find in NC an integral vector x with
0 < xi < ci, such that x satisfies Wx > d, and

g{xi,x2,...,xn) < g(x*) + en2 , (2)

where g(x) is the objective function and g(x*) is its optimal value.

For ease of exposition and notation we will present the result for the Positive
Smooth MQP, i.e. we suppose without loss of generality that the instance has
all the coefficients non-negative and then show how to deal with the general case
in Section 3.2.

3.1 Approximating Positive Smooth MQP

Theorem 7. Given a positive instance of Smooth MQP such that Wx > d,
0 < Xi < Ci, 1 < i < n, is feasible and a fixed e, we can find in NC an integral
vector x with 0 < X{ < Ci, such that x satisfies Wx > d, and

9(xi,x2,...,xn) < g(x*) +en2 , (3)

where g{x) is the objective function and g{x*) is its optimal value.

To prove the theorem, we write the program (1) equivalently as4:

min c
s.t. xTAx + bx < c

Wx > d (4)
0 < Xi < Ci, 1 < i < n
xi integral, 1 < i < n .

Notice that, by using a binary search, for Theorem 7 it suffices to prove the
following theorem.

Theorem 8. Suppose there is an integral solution to the following Positive Multi-
valued Quadratic System

xTAx + bx < c
Wx>d (5)
0 < Xi < Ci, 1 < i < n .

Then, for any fixed e > 0, we can find in NC an integer vector x with 0 < Xi <
cii 1 < i < n> that satisfies Wx > d and such that

xTAx + bx <c + en2 . (6)

The main steps of the proof are the followings:

- the Smooth MQP is reduced in NC to an appropriate LP program in packing
form to which a fractional solution is found via Luby-Nisan's [10] algorithm.

- the fractional solution is rounded to an integer one through the technique of
Alon and Srinivasan [1].

4 The constant a in the objective function is unimportant.

■ 921

FEUP - Faculdade de Engenharia da Universidade do Porto

Reducing Smooth MQP to LP

Let x be a feasible solution to (5), as supposed, and let us write r = xA+b. Notice
that r, = 0{n) due to the magnitudes of the coefficients. Since x1Ax + bx =
(xTA + b)x, we can express the quadratic program (5) as a linear program

xTA + b<¥
fx < c
Wx>d ('>
0 < Xi < Ci, 1 < i < n ,

(LP1)
for which x is also a feasible solution. The following observation is immediate.

Proposition 9. If x is a feasible solution to (LP1) thenx is also feasible to (5).

Clearly, any coefficient in (LP1) is non-negative. However, (LP1) is not in the
packing/covering form because in it we have both types of restrictions. To over-
come this, we modify (LP1) appropriately by introducing variables zi = c; - £;.
Thus, (LP1) is written as

xT A + b<f

rx < c
n n

Y^WkjZj < Y^WkjCj -dk, 1 <k <m
j=l j=l

%i i %i — Q? l<i<n

U ^ X i, Z%) l<i<n.

(LP2)
We can suppose, without loss of generality, that Vfc, 1 < k < m, J2]=i wkjCj -
dk > 0 because otherwise the system {Wx > d, Xi < Ci, 1 < i < n} would not
be feasible. So, the above program (LP2) is still positive. The relation between
(LP1) and (LP2) is given as follows.

Proposition 10. (a) if x is a feasible solution to (LP1) then (x,z), where Zi =
Ci - xi, is also feasible to (LP2); (b) if (x,z) is a feasible solution to (LP2) then
x is a feasible solution to (LP1).

Finally, to transform the conditions xt + Zi = C{ into xt + Zi < Ci, we add to
(LP2) an adequate objective function resulting in the following program:

max T,*=i(xi + Zi)
s.t. xTA + b<f (8)

fx < c (9)

Y!j=i wkjZj < E"=i wkjCj -dk, 1 < k < m

Xi + zi < C(, 1 < i < n

0 < Xi, zi, 1 < i < n .

922-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

(LP3)
Notice that (LP3) is a Positive Packing Program. The programs (LP2) and (LP3)
are related as follows:

Proposition 11. (a) if (x.z) is a feasible solution to (LP2) then it is also
feasible to (LP3); (b) if (x,z) is an (1 — c)-optimal solution to (LP3) then
we can construct {x',z') in NC such that it is feasible to {YTj=iwkjzj <

S?=i wkjCj ~ dk, 1 < k <m, Xi + Zi < Ci, 1 < i < n} and

x'TA + b<f+Kie

fx' < c + KiEXl

where K\ and K2 are two constants computable in NC from the instance.

Proof, b) A near-optimal solution (x, z) to (LP3) can be found via the Luby
and Nisan's algorithm. Such solution will have cost at least (1 — e) 2I=i °i (sup-
posing that (LP2) is feasible). Now, we define z' — z and x', by taking x\ = Ci-Z{.
Since, due to near optimality of solution (x, z),

Y.ixi+Zi) >(l-e) £CJ
»=i t=i

we will have that xt + zt « (1 - e)ci therefore, intuitively, the values of x\
will not increase too much. More precisely, let, for any i, x\ = Xi + £;, where
£j = a — Xi — Zi and also let e = (e\,..., en). Notice that

n n n n n n n

Y^£i = ^{ci-Xi-Zi) = ^2ci-^2(xi + Zi) < ^Cj-(l-e)^Ci = e^Ci .
i=l i=l t=l i=l

(10)
Clearly, the system {5Z™=1 WkjZj < IZ"=i wkjCj - dk, 1 < k < m, Xi < a, 1 <
i < n} will be satisfied by (x',z') but the rest of constraints (8) and (9) might be
violated by x'. However, because of the magnitudes of a^- = 0(1) and fj = 0(n),
for x' we have that

x'TA + b=(xT + e)A + b < {xTA + b) + eA<r + K1e (11)

rx' - f(x + e) < c + K2sn (12)

where K\ and K2 are two constants defined as follows: K\ = ($2™=1 c,)-maxij ay
and K2 = (Yl7=i Ci)-maxjaj where a* are the upper bounds onfj, ft <cxi-n. G

Rounding of the Fractional Solution

Having the fractional solution (x',z'), we apply the Randomized Rounding of
Alon and Srinivasan to {^=1 wkjZj < YTj=\ wkjCj - dk, 1 < k < m). Round-
ing the feasible fractional solution z' gives an integral solution u, that satisfies

•923-

FEUP - Faculdade de Engenharia da Universidade do Porto

E"=i wkjUj < YJj=i wkjCj - dk, 1 < k < m. Letting y such that yt = a - uh

we have

Wy > d

Vi <Ci, 1 < i < n .

Furthermore, for y we will have:

yTAj +bj< {Tj + Kl£) + O(^Tbg^)
fy<(c + K2en) + 0{n) ■ 0{^n^H) . {l6)

Consequently,

yTAy + by= (yTA + b)y < ((r + Kl£) + O(v^TogW)) y

<ry + Kiel ■ y + 0{\/n\ogn)l ■ y

(14)
< (c + K2en) + 0{n) ■ 0(y/n\ogn) + Kiel ■ y + 0{s/nlogn)l • y

<c+{Ki+K2 + 2)en2 ,

where we have denoted by 1 the vector all whose entries are equal to 1. Thus,
if we find the fractional solution with e' = e/(Ki + K2 + 2) we will have, from
above, yTAy + by<c + en2, as desired.

But, we can write (7) only if we knew the values Fi; i.e., the vector r. Instead,
it is shown in [3] that using estimates r{ for them such that If, - r»| < en then
(13) and (14) still hold. These estimates are found similarly as in [3, 2], through
the Sampling Lemma, and we omit the details. o

Corollary 12. If the instance of Smooth MQP has optimal value g(x*) = Q{ri2),
i.e., g(x*) > ön2, for some Ö > 0, then Theorem 6 implies an (1+e)-approximation
to such instances, i.e. an NC Approximation Scheme.

Indeed, in this case the solution x satisfies g(x) < (1 +e/S)g(x*).

3.2 The general case: Smooth MQP

A close observation of the proof of Theorem 7 shows that the assumption on
the coefficients Oy, bt and a of the MQP objective function to be non-negative
can be removed5. Indeed, this assumption is used only in the reduction step to
obtain a positive linear program (LP3) in order to enable the Luby and Nisan's
algorithm. More precisely, the assumption assures that the linear restrictions

xTA + b<r* (15)

r*x < c

have positive coefficients. This last fact can be assured without the positiveness
assumption as follows:

To be precise, the notation on the magnitudes of the coefficients given in the defi-
nition of Smooth MQP becomes now a{j = 0(1), 6; = 0(n) and c = 0(n2); also,
rf - 0(n) (the notation used in [3]).

-924-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

a) if some a^ < 0 then substitute the term a^Xi by -a;j(z; - ci).

b) if some rf < 0 then substitute the term rfxt by -rf(zt - c,).

Notice that by applying a) the left-hand sides of restrictions (15) become non-
negative and therefore the right-hand sides so do (otherwise the program would
be infeasible). Doing these (possible) variable changes we obtain the positive
linear program (LP3). The variable change effects the right-hand sides of {xTA +
b < r*,r*x < c} but yet it doesn't effect Proposition 11 due to the definition
of (x1, z') and the magnitudes of the coefficients. On the other hand, removing
the positiveness condition on a^, bt and a doesn't effect the rounding scheme
of Alon and Srinivasan since it applies to the program Wz < W ■ 1 - d. From
this observation we can restate Theorem 7 without the positiveness condition
on the coefficients of the objective function of the MQP instance thus yielding
Theorem 6.

4 Applications

In this section we show that the additive approximation on Smooth MQP can
be applied to a couple of problems arising from High Multiplicity Scheduling
Problems, namely the Weighted Model with Identical Processing Requirements
and Unweighted Model with Variable Processing Requirements. We first give the
description of the general model of High Multiplicity Scheduling.

General Model

The Multiplicity Scheduling Problem, in its general form, is stated as follows [5].
There are n types of jobs, Ji,J2,...,Jn and there are rij identical jobs of type
Jj. There are m parallel machines Mi, M2,..., Mm, to process the jobs. Machine
Mi is released at time r$ and it can process at most c, jobs. Each job should be
processed in its entirety in one of the m machines. All the jobs are available for
processing at time 0. The processing requirement of job of type j on machine i
is pij time units. There is a non-negative weight u>ij associated to job j when
processed by machine i. The objective is to schedule the jobs on m machines so
that the total weighted completion time is minimized.

4.1 Weighted Model with Identical Processing Requirements

In this case we have identical processing requirements (the p^ are written as
Pij = 1/Si) and general weights Wij. For any machine i, i = 1,... ,m, let <7j be
a permutation of {1,..., n} which arranges n types of jobs in a non-increasing
order of their weights. Let also the variable Xy denote the number of jobs of type
c?i(j) processed in machine i. The cost of assigning a job of type <7;(j) to the
kth place (k = 1,...,CJ) is (r* + fc(l/s,))wji(rj(j). The integer programming [5]

■925-

min

s.t.

FEISP - Faculdade de Engenharia da Universidade do Porto

formulation of the problem follows.

E£ i E"=i riWi(TiU)xu + J2ti E"=i jrWirU) E*=i (E/=I"
x" + k)

Y,'j=ixij =cu (i = l,...,m) (16)

E{(i,fc),i=l,...m,i7i(fc)=j} ZÜ — nJi U = li-••>"■)

0 < iy < Cj, integral, (i = 1,..., m; j = 1,..., n) .

(WIP)
Notice that the restriction (16) is written with equality since we can always
introduce an additional type of job (n + 1) with weight it>;,n+i = 0. In [5] this
program was written as a convex separable quadratic program and then was
solved through known polynomial time algorithms (e.g. Minoux, 1986).

In order to apply the additive approximation procedure, we will limit our-
selves to dense instances of the problem as specified below.

Dense Instances. An instance of the High Multiplicity Scheduling Problem
(Weighted Model with Identical Processing Requirements) is dense if it satis-
fies the following restrictions:

(a) The weights Wy, the released times rt and the processing times ptj are
bounded by constants);

(b) The completion time of the minimum schedule is J?(n2).

Further, we consider a relaxation of the integer program (WIP) by relaxing
the equality restrictions into covering type restrictions as follows.

min EfcLi TZ=iriVi<n(j)xiJ + EilLi Y.nj=iTiWia(j){xij{xil +■ ■ ■+ xiti-i + \xij))
s.t.

E"=i xij > (1 - e)ci, (i ~ 1, ■ ■ • ,m)

TJ{(i,k),i=i,...m,ai(k)=j}xij > (i-eK-. Ü = !,•■•,n)

0 < Xij <a, (i = 1,..., m; j = 1,..., n) .

(WQP)
It is straightforward to observe the following relation between dense instances
of our scheduling problem and the smooth instances of Multi-valued QP.

Proposition 13. // the instance of scheduling is dense then the corresponding
(WQP) instance is a Smooth Multi-valued QP instance.

■926-

VEC PAR '2000 - 4th International Meeting on Vector and Parallel Processing

Hence by applying Theorem 6 and Corollary 12 to such instances we obtain the
following:

Theorem 14. Given a dense instance of Multiplicity Scheduling (Weighted Mod-
els with Identical Processing Requirements) of n jobs and m machines there is
an NC algorithm that finds a schedule whose completion time is at most (1 + e)
times the minimum schedule and it schedules at least (l-e)nj jobs for any group
of jobs of type j, j = 1,..., n.

4.2 Approximating Unweighted Model with Variable Processing
Requirements

This problem is obtained from the general model by letting Wij — Vi for all types
of job j and machine i. The processing time of each one of the rij jobs of type j
on the ith machine is pij.

Let us suppose that, for any machine i, i = 1,... , m, the processing times
are ordered in non-increasing order given by the permutation er*. Let also the
variable xtj denote the number of jobs of type at(j) processed in machine i.
With this notations, we have the following integer programming formulation of
the problem [5].

min £I=i £?=i nviXij + £™ x £"=i ViPiaU] Et=i (£Ci x« + k)
s.t.

Y!j=ixH =c>> (i = l,--.,m)

£m {(i,k),l<i<m,(7i(j)=k} XlJ = Uj, (j = l,...,n)

0 < Xij, integral, (i — 1,..., m; j = 1,..., n)

(IP)
Now we apply the approximation scheme in the same way as in the case

of the Weighted Model with Identical Processing Requirements and obtain the
following theorem.

Theorem 15. Given a dense instance of Multiplicity Scheduling (Unweighted
Model with Variable Processing Requirements) of n jobs and m machines there
is an NC algorithm that finds a schedule whose completion time is at most (1 + e)
times the minimum schedule and it schedules at least (l-e)nj jobs for any group
of jobs of type j, j = 1,..., n.

Open Questions

Our approximation procedure applies to a restricted class of instances of the
scheduling problems. It would be interesting to extend the result to other in-
stances of the problem without the denseness condition. Also, applying our pro-
cedure to other problems modeled by Multi-valued QP would be of interest.

■927-

FEUP - Faculdade de Engenharia da Universidade do Porto

References

1. Alon, N., Srinivasan, A.: Improved Parallel Approximation of a Class of Integer
Programming Problems. Algorit., 17 (1997) 449-462

2. Arora, S., Frieze, A., Kaplan, H.: A New Rounding Procedure for the Assignment
Problem with Applications to Dense Graph Arrangement Problems. In Proc. of
the FOCS'96, (1996) 21-30

3. Arora, S., Karger, D., Karpinski, M.: Polynomial Time Approximation Schemes
for Dense Instances of NP-hard Problems. J. Comput. System Sei., 58(1) (1999)
193-210

4. Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory
of NF'-Completeness. W.H. Freeman and Co. (1979)

5. Granot, F., Skorin-Kapov, J., Tamir, A.: Using Quadratic Programming to Solve
High Multiplicity Scheduling Problems on Parallel Machines. Algorit., 17 (1997)
100-110

6. Hochbaum, D.S., Shamir, R.: Strongly Polynomial Algorithms for the High Mul-
tiplicity Scheduling Problem. Op. Res., 39(4) (1991) 648-653

7. Karpinski, M., Wirtgen, J., Zelikovsky, A.: An Approximation Algorithm for the
Bandwidth Problem on Dense Graphs. Tech. Rep. TR97-017, ECCC, (1997)

8. Karpinski, M., Wirtgen, J., Zelikovsky, A.: Polynomial Times Approximation
Schemes for Some Dense Instances of NP-hard Problems. Tech. Rep. TR97-024,
ECCC, (1997)

9. Karpinski, M., Zelikovsky, A.: Approximating Dense Cases of Covering Problems.
Network Design: Connectivity and Facilities Location (Princeton, NJ, 1997) Amer.
Math. Soc, (1998) 169-178

10. Luby, M., Nisan, N.: A Parallel Approximation Algorithm for Positive Linear
Programming. In Proc. of 25th ACM Symp. on Theory of Comp., (1993) 448-457

11. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univ. Press
(1995)

12. Raghavan, P.: Probabilistic Construction of Deterministic Algorithms: Approxi-
mating Packing Integer Programs. J. of Comp. and Syst. Sei., 37 (1988) 130-143

13. Raghavan, P., Thompson, C: Randomized Rounding: a Technique for Provably
Good Algorithms and Algorithmic Proofs. Combinat., 7 (1987) 365-374

14. Serna, M.: Approximating Linear Programming is Logspace Complete for P.
Inf. Proc. Lett., 37 (1991) 233-236

15. Serna, M., Xhafa, F.: The Parallel Approximability of a Subclass of Quadratic Pro-
gramming. In Proc. of Int. Conf. on Parallel and Distributed Systems, ICPADS'97,
IEEE, (1997) 474-482 To appear in Theoret. Comp. Sei.

This article was processed using the orgX macro package with LLNCS style

■928-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

High Level Parallelization of a 3D
Electromagnetic Simulation Code With
Irregular Communication Patterns

Emmanuel Cagniot1*, Thomas Brandes2, Jean-Luc Dekeyser1, Francis
Piriou3, Pierre Boulet1 and Stephance Genet3

1 Laboratoire d'Informatique Fondamentale de Lille (LIFL)
U.S.T.L. Cite Scientifique, F-59655 Villeneuve d'Ascq Cedex, France

2 Institute for Algorithms and Scientific Computing (SCAI)
German National Research Center for Information Technology (GMD)
Schloß Birlinghoven, D-53754 St. Augustin, Germany

3 Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP)
U.S.T.L. Cite Scientifique, F-59655 Villeneuve d'Ascq Cedex, France

Abstract. 3D simulation in electrical engineering is based on recent research work
(Whitney's elements, auto-gauged formulations, discretization of the source terms)
and it results in complex and irregular codes. Generally, explicit message passing
is used to parallelize this kind of applications requiring tedious and error prone
low level coding of complex communication schedules to deal with irregularity. In
this paper, we focus on a high level approach using the data-parallel language High
Performance Fortran. It allows both an easier maintenance and a higher software
productivity for electrical engineers. Though HPF was initially conceived for regular
applications, it can be successfully used for irregular applications when using an
unstructured communication library that deals with indirect data accesses.

Topics: cellular automata and physics.

1 Introduction

1 Electrical engineering consists of designing electrical devices like iron core
coils (example 1) or permanent magnet machines (example 2) (see Fig. 1).
As prototypes can be expensive, numerical simulation is a good solution to
reduce development costs. It allows to predict device performance from phys-
ical design information. Accurate simulations require 3D models, inducing
high storage capacity and CPU power needs. As computation times can be
very important, parallel computers are well suited for these models.

3D Electromagnetic problem modeling is based on Maxwell's equations.
Generally, the resolution of these partial differential equations requires nu-
merical methods. They transform the differential equations into an algebraic

* Corresponding author, e-mail: cagniotaiifl.fr, Tel: +33-0320-434730, Fax:
+33-0320-436566

1 Candidate to the best student paper award

■ 929-

FEUP - Faculdade de Engenharia da Universidade do Porto

equation system whose solution gives an approximation of the exact solution.
The space discretization and the time discretization can be done respectively
by the finite element method (FEM) and by the finite difference method
(FDM). The finite elements used are Whitney's elements (nodes, edges, facets
and volumes) [1]: they allow to keep the properties of continuity of the field
at the discrete level. In function of the studied problem, the equation system
can be linear or non-linear.

As for many other engineering applications, FEM codes use irregular data
structures such as sparse matrices where data access is done via indirect
addressing. Therefore, finding data distributions that provide both high data
locality and good load balancing is difficult. Generally, parallel versions of
these codes use explicit message passing.

In this paper, we focus on a data-parallel approach with High Perfor-
mance Fortran (HPF). Three reasons can justify this choice. First, a high
level programming language is more convenient than explicit message pass-
ing for electrical engineers. It allows both an easier maintenance and a higher
software productivity. Second, libraries for optimizing unstructured commu-
nications in codes with indirect addressing exist [4]. The basic idea is that
these codes reuse several times the same communication patterns. Therefore,
it is possible to compute these patterns one time and to reuse them if possi-
ble. Third, the programmer can further optimize its code by mixing special
manual data placements and simple HPF distributions to provide both high
data locality and good load balancing.

Section 2 presents the main features of our electromagnetic code. Section 3
presents the HPF parallelization of the magnetostatic part of this code. Sec-
tion 4 presents the unstructured communication library we used to efficiently
parallelize the preconditioned conjugate gradient method. Section 5 presents
the results we obtained on a SGI Origin and an IBM SP2. Conclusion and
future works are given in Section 6.

J.

Fig. 1. An iron core coil and a permanent magnet machine.

■930-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

2 The Code

The L2EP at the University of Lille has developed a 3D FORTRAN 77 code
for modeling magnetostatic (time-independent) and magnetodynamic (time-
dependent) problems [5]. The magnetostatic part uses formulations in terms
of scalar or vector potentials where the unknowns of the problem are respec-
tively the nodes and the edges of the grid. The magnetodynamic part uses
hybrid formulations that mix scalar and vector potentials.

The great particularity of this code is the computation of the source terms
using the tree technique. Generally, in the electromagnetic domain, gauges
are required to obtain an unique solution. They can be added into the partial
differential equations but this solution involves additional computations dur-
ing the discretization step. Another solution results from a recent research
work [7]. A formulation is said compatible when all its entities have been
discretized onto Whitney's elements. This work has shown that problems are
auto-gauged when both a compatible formulation and an iterative solver are
used. Therefore, to obtain a compatible formulation, source terms must be
discretized using the tree technique, actually a graph algorithm.

As the meshing tool only produces nodes and elements, the edges and
the facets must be explicitly computed. The time discretization is done with
Euler's implicit algorithm. The FEM discretization of a non-linear problem
results in an iterative loop of resolutions of linear equation systems. Two
non-linear methods are used: Newton-Raphson's method and the fixed-point
method. Their utilization is formulation-dependent. The linear equation sys-
tems are either symmetric positive definite or symmetric semi-positive defi-
nite. Therefore, the preconditioned conjugate gradient method (PCG) is used.
The preconditioner results from an incomplete factorization of Crout..

The overall structure of this code is as follows:

1. define the media, the inductors, the magnets, the boundary
conditions, etc.

2. read the input file and compute the edges and the facets.
3. compute the source terms.
4. check the boundary conditions and number the unknowns.
5. time loop:

5.1. create the Compressed Spare Row (CSR) representation of the
equation system.

5.2. non-linear loop:
5.2.1. assembly loop:

- compute and store the contribution of all the
elements in the equation system.

5.2.2. compute the preconditioning matrix.
5.2.3. solving loop:

- iterate preconditioned conjugate gradient.

This structure shows that computation times can be very important when
we use time-dependent formulations in the non-linear case.

■ 931 -

FEUP - Faculdade de Engenharia da Universidade do Porto

The matrices for the equation systems are represented by the Compressed
Sparse Row (CSR) format as shown in Fig. 2. As they are symmetric, the
upper triangular part is not explicitly availabe to save memory.

integer :: N = 8
integer :: NZ = 14 non-zeros

12345678
1 I 1 I I I | I 1
2 \
3
4
5
6 \

7
8 _ ~

integer, dimension (N+l) :: iA
integer, dimension (NZ) :: jA
real(KIND=0.0d0), dimension (NZ) :: A

1 2 3 4 5 6 7 8 9 10 11 12 13 14
jA12|34|l2546|67|468

A | . | | | | | | | | | | | | j |

Fig. 2. Compress sparse row format of a matrix.

3 HPF Parallelization of the Magnetostatic Part

For software engineering reasons, the magnetostatic part of the code has been
ported to Fortran 90 and it has been optimized. The Fortran 90 version makes
extensive use of modules (one is devoted to the data structures), derived data
types and array operations. It consists of about 9000 lines of code. This new
version has been converted to HPF considering only the parallelization of the
assembling and the solver that take about 80% of the whole execution time
in the linear case. All other parts of the code remained serial.

In a first step, all the data structures including the whole equation system
have been replicated on all the processors. Each of them has to perform the
same computations as the others until the CSR structure of the equation
system is created. Some small code changes were necessary to reduce the
number of broadcasts implied by the serial I/O operations.

The assembling loop is a parallel loop over all the elements, each element
contributing some entries to the equation system (see Fig. 3). Though one
unknown can belong to more than one element, and so two elements might
add their contribution at the same position, the addition is assumed to be an
associative and commutative operation. The order in which the loop iterations
are executed does not change the final result (except for possible round-off
errors). Therefore it is safe to use the INDEPENDENT directive of HPF together
with the REDUCTION clause for the arrays containing the values of A (matrix)
and B (right hand side). A one-dimensional block-distributed template, whose

■932-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

size is given by the number of elements, has been used to specify the work
distribution of this loop via the ON HOME clause.

Mesh

s / s / s
\

s / / s s s s /
r^ ^ s s s s

^ s s s
s ^ ^ / s*

!hpf$ template ELEMENTS(NED

IhpfS independent, reduction(A,B)
!hpf$ton home (ELEMENTS(IEL))

do IEL=1,NEL

Fig. 3. Assembling the contributions for the equation system.

In a second step, the equation, system and the preconditioning matrix
have been general block distributed in such a way that all the information
of one row A(i,:) resides on the same processor as vector element z(i). By
the RESIDENT directive, the HPF compiler gets the information that avoids
unnecessary checks and synchronizations for accesses to these matrices.

The algorithm for the preconditioned conjugate gradient method is dom-
inated by the matrix-vector multiplications and by the forward/backward
substitutions required during the preconditioning steps.

Due to the dependences in the computations, the incomplete factorization
of Crout before the CG iterations and the forward/backward substitution per
iteration are not parallel at all. The factorization has been replaced with an
incomplete block factorization of Crout that takes only the local blocks into
account forgetting the coupling elements. By this way, the factorization and
the forward/backward substitution do not require any communication. As the
corresponding preconditioning matrix becomes less accurate, the number of
iterations increases with the number of blocks (processors). But the overhead
of more iterations is less than the extra work and communication needed
otherwise. HPF provides LOCAL extrinsic routines where every processor sees
only the local part of the data. This concept is well suited to restrict the
factorization and the forward/backward substitution to the local blocks where
local dependences in one block are respected and global dependences between
the blocks are ignored.

The matrix-vector multiplication uses halos [3] (see next section) that
provide an image of the non-local part of a vector on each processor, and
the communication schedule needed for the related updating operations. The

■933-

FEUP - Faculdade de Engenharia da Universidade do Porto

computation time for the halo and its communication schedule is amortized
over the number of iterations.

For running our HPF code on parallel machines we used the ADAP-
TOR HPF compilation system of GMD [2]. Only ADAPTOR supported the
features needed for the application (ON clause, general block distributions,
RESIDENT directive, REDUCTION directive, LOCAL routines, halos and reuse
of communication schedules). By means of a source-to-source transforma-
tion, ADAPTOR translates the data parallel HPF program to an equivalent
SPMD program (single program, multiple data) in Fortran where this For-
tran program is compiled with a native Fortran compiler. The generated
SPMD program contains a lot of calls to the ADAPTOR specific HPF run-
time system, called DALIB (distributed array library) that implements also
the functionality needed for halos (see Figure 4).

Data Parallel Program

(High Performance Fortran)

\
fadapt

i

ADAPTOR

System,
DALIB

'
SPMD (message passing) Program Parallel

Executable*

1

IH- KIKAN 77 + DALIB ca Us) compile, link

Fig. 4. Schematic view of ADAPTOR HPF compilation.

4 Unstructured Communication Library Approach

The ADAPTOR HPF compilation system provides a library that supports
shadow edges (ghost points) for unstructured applications using indirect ad-
dressing, also called halos [4]. A halo provides additionally allocated local
memory to keep on one processor also non-local values of the data that is
accessed by the processor and a communication schedule that reflects the
communication pattern between the processors to update these non-local
copies. As the size of the halo and the communication schedule depend on
the values of the indirection array, they can only be computed at runtime.

The use of halos (overlapping, shadow points) is common manual practice
in message passing programs for the parallelization of unstructured scientific
applications. But the calculation of halo sizes and communication schedules
is tedious and error prone and requires a lot of additional coding. Up to
now, commercial HPF compilers do not support halos. The idea of halos
has already been followed within the HPF+ project and implemented in the

■934-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Vienna Fortran Compiler [3] where the use of halos is supported by additional
language features instead of a library.

Fig. 5 shows the use of halos for the matrix-vector multiplication B = .4 x
X. The vectors X and B are block distributed among the available processors.
The matrix A is distributed in such a way that one row A(i,:) is owned by the
same processor that owns B(i). For the matrix-vector multiplication, every
processor needs all elements X(j) for the non-zero entries A(i,j) owned by
it. Though most of these values might be available, there remain some non-
local accesses. The halo will contain these non-local values after an update
operation using the corresponding halo schedule.

X I^J owned data | | shadow data

1 -> 3 4 5 6 7 8
1
2
3

4

5

6

P2

7

8
P3

Fig. 5. Distribution of matrix with halo nodes for the vector.

As mentioned before, the upper triangular of A part is not explicitly avail-
able. For j > i the elements A(i,j) must be accessed via A(j,i). To avoid
the communication of matrix elements the values of A(i,j) * X(j) are not
computed by the owner of B(i) but by the owner of X(j) as here A(j,i)
is local. Therefore we have an additional communication step to reduce the
non-local contributions of B. But for this unstructured reduction we can use
the same halo structure for the vector B.

For the calculation of the halo, we had to provide the halo array, which
is the indirectly addressed array, and the halo indexes that are used for the
indirect addressing in the distributed dimension. In our case, the halo arrays
are the vectors X and B, and the halo indexes are given by the integer array
jA containg the column indices used in the CSR format. Beside the insertion
of some subroutine calls for the HPF halo library, we had only to insert some
HPF directives for the parallelization of the loop implementing the matrix-
vector multiplication.

The calculation of the halo structure is rather expensive. But we can use
the same halo structure for the update of the non-local copies of vector X
and for the reduction of the non-local contributions of vector B. Furthermore,

■935-

FEUP - Faculdade de Engenharia da Universidade do Porto

this halo can be reused for all iterations of the iteration loop in the solver as
the structure of the matrix and therefore the halo indexes do not change.

5 Results

Table 1 shows the characteristics of the problems of Fig. 1 in the case of a
vector potential formulation. These results have been obtained for the test
cases of Table 1 on a SGI Origin and on an IBM SP2 in the linear case (in the
magnetodynamic case, each column would represent results associated with
one time increment). Their quality has been measured by two ways: graph-
ically with the dumped files and numerically with the computed magnetic
energies. All the computed solutions are the same.

example 1 example 2
nodes 8059 25730
edges 51356 169942
facets 84620 284669
elements 41322 140456
unknowns 49480 162939
non-zero entries 412255 1382596

Table 1. Test cases of the code

Table 2 presents results for example 1 on the SGI Origin with up to four
processors. Both, the assembling and the solver scale well for a small number
of processors.

NP = 1 NP = 2 NP = 3 NP = 4
assembling
solver
iterations

12.87 s
30.47 s

225

6.54 s
18.89 s

260

4.63 s
9.74 s

213

3.61 s
8.80 s

237
Table 2. Results for example 1, SGI Origin

Table 3 presents results for example 1 on the IBM SP2 with up to 16
processors. In the assembling loop the computational work for one element
is so high that the parallelization still gives good speed-ups for more proces-
sors even if the reduction overhead increases with the number of processors.
The scalability of the solver is limited as the data distribution has not been
optimized for data locality yet. On the other hand, the number of solver iter-
ations does not increase dramatically with the number of processors and the
higher inaccuracy.

-936-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

NP = 1 NP = 2 NP = 4 NP = 8 NP = 16
assembling
solver
iterations

32.70 s
48.45 s

224

16.77 s
36.99 s

247

8.98 s
23.51 s

257

5.27 s
14.45 s

247

3.47 s
10.59 s

258
Table 3. Results for example 1, IBM SP2

Comparison between Table 2 and Table 3 shows that for the two par-
allel machines the numbers of iterations are different for a same number of
processors. This can be explained by the application of different aggressive
optimizations of the native Fortran compilers (optimization level 3) that may
generate (even slightly) different results.

NP = 1 NP = 2 NP = 3 NP = 4
assembling 43.77 s 22.71 s 16.03 s 12.95 s
solver 625.06 s 160.84 s 116.63 s 93.25 s
iterations 1174 464 509 505
time/iter 532 ms 347 ms 229 ms 165 ms
Table 4. Results for example 2, SGI Origin

Table 4 presents results for example 2 on the SGI Origin. The assembling
and one iteration of the solver scale well. Regarding the number of solver
iterations, the results are surprising. For its explanation we must interest
ourselves to the numbering of the unknowns which plays an important role
in the conditioning of the equation system. In our case, the meshing tool sorts
its elements by volumes, every volume corresponding to a magnetic perme-
ability (air, iron, etc.). To avoid large jumps of coefficients in the matrix, the
unknowns are numbered by scanning the list of elements. Therefore, to every
volume of the grid corresponds a homogeneous block of the matrix. The con-
ditioning of this matrix is directly linked to the uniformity of the magnetic
permeability of these different blocks. When this uniformity is poor, block
preconditioners resulting from domain decomposition methods can be used.
By preconditioning each block independently, they allow to bypass the prob-
lem. In our case, the incomplete block factorization of Crout has led to the
same result. For its verification we have re-sorted the elements of the grid by
merging volumes with the same magnetic permeability. As a result, we have
divided the number of PCG iterations by two in the Fortran 90 program.

6 Conclusions and Future Work

This HPF version achieves acceptable speed-ups for smaller number of proces-
sors. According to the few number of HPF directive added in the Fortran 90

■937-

FEUP - Faculdade de Engenharia da Universidade do Porto

code, it is a very cheap solution that allows both an easier maintenance and a
higher software productivity for electrical engineers, compared to an explicit
message passing version. This was its main objective. Results obtained for
real electrical engineering problems show that HPF can deal efficiently with
irregular codes when using an irregular communication library.

In order to improve data-locality and to reduce memory consumption, the
next HPF version will use a conjugate gradient method where the precon-
ditioner will be based on domain decomposition using a Schur complement
method [6].

In the final step of this work we will add the magnetodynamic formula-
tions.

References

1. A.Bossavit. A rational for edge elements in 3d fields computations. In IEEE
Trans. Mag., volume 24, pages 74-79, January 1988.

2. ADAPTOR. High Performance Fortran Compilation System. WWW documen-
tation, Institute for Algorithms and Scientific Computing (SCAI, GMD), 1999.
http://www.gmd.de/SCAI/lab/adaptor.

3. S. Benkner. Optimizing Irregular HPF Applications Using Halos. In Rolim, J.
et al., editor, Parallel and Distributed Processing, Proceedings of IPPS/SPDP
Workshops, volume 1586 of Lecture Notes in Computer Science, pages 1015-
1024, San Juan, Puerto Rico, USA, April 1999. Springer.

4. T. Brandes. HPF Library, Language and Compiler Support for Shadow Edges in
Data Parallel Irregular Computations. In CPC 2000, 8th International Workshop
on Compilers for Parallel Computers, Aussois, France, January 4-7, pages 21-
34, January 2000.

5. Y.Le Menach, S.Clenet, and F.Piriou. Determination and utilization of the
source field in 3d magnetostatic problems. In IEEE Trans. Mag., volume 34,
pages 2509-2512, 1998.

6. Barry F. Smith, Petter E. Bjorstad, and William Gropp. Domain Decompo-
sition: Parallel Multilevel Methods for Elliptic Partial Differential Equations.
Cambridge University Press, 1996.

7. Z.Ren. Influence of R.H.S. on the convergence behaviour of curl-curl equation.
In IEEE Trans. Mag., volume 32, pages 655-658, 1996.

-938-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Pre

Large-Eddy Simulations of Turbulent Flows,
from Desktop to Supercomputer

Ugo Piomelli1, Alberto Scotti2, and Elias Balaras3

1 University of Maryland, College Park MD 20742, USA,
ugoOeng. umd. edu,

WWW: http://www.glue.umd.edu/~ugo
2 University of North Carolina, Chapel Hill NC 27599-3300, USA

scottiQmarine.unc.edu
3 University of Maryland, College Park MD 20742, USA,

balarasQeng.umd.edu

Abstract. In this paper, a general introduction to the large-eddy sim-
ulation (LES) technique will be given. Modeling and numerical issues
that are under study will be described to illustrate the capabilities and
requirements of this techniques. A palette of applications will then be
presented, chosen on the basis both of their scientific and technologi-
cal importance, and to highlight the application of LES on a range of
machines, with widely different computational capabilities.

1 Introduction

Turbulent flows are ubiquitous in nature and in technological applications. They
occur in such diverse fields as metereology, astrophysics, aerospace, mechanical,
chemical and environmental engineering. For this reason, turbulence has been
the object of study for many centuries. In 1510, Leonardo da Vinci accompanied
a drawing of the vortices shed behind a blunt obstacle (Fig. 1) with the following
observation:

Observe the motion of the water surface, which resembles that of hair,
that has two motions: one due to the weight of the shaft, the other to the
shape of the curls; thus, water has eddying motions, one part of which is
due to the principal current, the other to the random and reverse motion.

Despite its importance, and the number of researchers that have studied it the-
oretically, experimentally and, recently, numerically, turbulence remains one of
the open problems in Mechanics.

The equations that govern turbulent flows are the Navier-Stokes equations.
For turbulent flows, no exact solutions are available, and their numerical solution
is made difficult by the fact that an accurate calculation depends critically on
the accurate representation, in space and time, of the coherent fluid structures
(eddies) that govern to a very large extent the transfer of momentum and en-
ergy. The direct solution of the Navier-Stokes equations (also known as "direct

-939-

FEUP - Faciildade de Engenharia da Universidade do Porto

Fig. 1. Sketch from Leonardo da Vinci's notebooks.

numerical simulation", or DNS) is an extremely expensive endeavor in turbulent
flows. Its cost depends on the cube of the Reynolds number, the dimensionless
parameter that measures the relative importance of convective and diffusive ef-
fects. At present, DNS calculations are limited to flows with Reynolds numbers
O(104), while most engineering and geophysical applications are characterized
by Re = O(106 - 109).

Practical, predictive, calculations require the use of simplified models. The
most commonly used one is the solution of the Reynolds-averaged Navier-Stokes
equations (RANS), in which the flow variables are decomposed into a mean and
a fluctuating part, as fore-shadowed in da Vinci's observations, and the effect
of the turbulent eddies is parameterized globally, through some more-or-less
complex turbulence model. This technique is widespread in industrial practice,
but turbulence models are found to require ad hoc adjustments from one flow to
another, due to the strongly flow-dependent nature of the largest eddies, which
contribute most to the energy and momentum transfer, and which depend to
a very significant extent on the boundary conditions. Furthermore, they fail
to give any information on the wavenumber and frequency distribution of the
turbulent eddies, which may be important in acoustics, or in problems involving
the interaction of fluid with solid structures.

The large-eddy simulation (LES) is a technique intermediate between DNS
and RANS, which relies on computing accurately the dynamics of the large eddies
while modeling the small, subgrid scales of motion. This method is based on the
consideration that, while the large eddies are flow-dependent, the small scales
tend to be more universal, as well as isotropic. Furthermore, they react more
rapidly to perturbations, and recover equilibrium quickly. Thus, the modelling
of the subgrid scales is significantly simpler than that of the large scales, and
can be more accurate.

Despite the fact that the small scales are modeled, LES remains a fairly
computationally intensive technique. Since the motion of the large scales must

-940-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

be computed accurately in time and space, fine grids (or high-order schemes) and
small time-steps are required. Since the turbulent motions are intrinsically three-
dimensional (3D), even flows that are two- or one-dimensional in the mean must
be computed using a 3D approach. Finally, to accumulate the averaged statistics
needed for the engineering design and analysis, the equations of motion must be
integrated for long times.

As a result of these computational requirements, until recently LES has been
a research tool, used mostly in academic environments and research laboratories
to study the physics of turbulence. Most calculations were carried out on vector
machines (Cray X-MP, Y-MP and C90, for instance). Typical computations of
flows at moderate Reynolds number required up to 1 million grid points, and
used times of the order of 100 CPU hours and more on such machines.

Recently, progress has been made on two fronts. First, the development of
advanced models [4,5] for the small-scale contribution to momentum transfer,
the subgrid-scale stresses, allows the accurate prediction of the response of the
small scales even in non-equilibrium situations. Secondly, the decreasing cost
of computational power has made it possible to perform larger simulations on
a day-to-day basis, even using inexpensive desktop workstations. Simulations
using 3 million grid points can easily be run on Pentium-based computers. The
turn-around time for a mixing-layer simulation that used 5 million points on a
dedicated Alpha processor is of the order of two days per integral scale of the
flow, a time comparable to what was achievable on a Cray, in which the greater
processor speed was often offset by the load of the machine, and the end-user was
frequently restricted to a few CPU hours per day. With the increased availability
of inexpensive workstation clusters, the application of LES is bound to become
more and more affordable. The use of large, massively parallel computers is,
however, still required by very advanced, complex applications that may require
very large numbers of grid points [0(1O7)], and correspondingly long integration
times.

In this article, a general introduction to LES will be given. Although partic-
ular emphasis will be placed on numerical issues, the main thrust of the paper
will not be the algorithmic problems and developments, but rather a discussion
of the capabilities and computational requirements of this techniques. A palette
of applications will then be presented, chosen on the basis both of their scientific
and technological importance, and to highlight the application of LES on a range
of machines, with widely different computational capabilities. This article should
not be seen as a comprehensive review of the area; the reader interested in more
in-depth discussions of the subject is addressed to several recent reviews [1-3].

2 Governing equations

The range of scales present in a turbulent flow is a strong function of the Reynolds
number. Consider for instance the mixing layer shown in Fig. 2. The largest
eddies in this flow are the spanwise rollers, whose scale is L; a very wide range
of smaller scales is present. The energy supplied to the largest turbulent eddies

■941

FEUP - Faculdade de Engenharia da Universidade do Porto

Large structures
scale L

Small structures'
scale n

Fig. 2. Visualization of the flow in a mixing layer (from Brown & Roshko [6]). The flow
is from left to right; a splitter plate (immediately to the left of the image) separates
a high-speed flow (top) from a low-speed one. The two streams then mix, forming the
large, quasi-2D rollers in the figure, as well as a range of smaller scales.

by the mean flow is transferred to smaller and smaller scales (energy cascade),
and eventually dissipated into heat by the smallest ones. Most of the energy, in
fact, is dissipated by eddies contained in a length scale band of about 677 to 6O77,
where rj is the so-called Kolmogorov scale.

In DNS, all the scales of motion, up to and including the dissipative scales of
order r] must be resolved; since the computational domain must be significantly
larger than the large scale L, while the grid size must be of order 77, the number
of grid points required is proportional to the ratio L/77. It can be shown that
this ratio is proportional to i?e3/4, where the Reynolds number Re = AULjv is
based on the velocity difference between the two streams, AU, and an integral
scale of the flow, L; v is the kinematic viscosity of the fluid. Thus, the number
of grid points needed to perform a three-dimensional DNS scales like the 9/4
power of the Reynolds number.

The time-scale of the smallest eddies also supplies a bound for the maximum
time-step allowed: since the ratio of the integral time-scale of the flow to the
Kolmogorov time-scale is also proportional to i?e3/4 the number of time-steps
required to advance the solution by a fixed time has the same dependence on Re.
Assuming that the CPU time required by a numerical algorithm is proportional
to the total number of points N, the cost of a calculation will depend on the
product of the number of points by the number of time-steps, hence to Re3.

In an LES only the large scales of motion must be resolved. The similarity of
the small scales, which only transmit energy to smaller scales, and the fact that
the global dissipation level is set by the large scales (even though the dissipation
takes place at the small-scale level) are exploited by SGS models, whose main
purpose is to reproduce the energy transfer accurately, at least in a statistical
sense. When the filter cutoff is in the inertial region of the spectrum (i.e., in
the wave-number range in which the energy cascade takes place), therefore, the
resolution required by an LES is nearly independent of the Reynolds number.

In wall-bounded flows, in which the scale of the large, energy-carrying eddies
is Reynolds-number-dependent, the situation is less favorable. The cost of an
LES is still, however, significantly reduced over that of a DNS.

■942-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

To separate the large from the small scales, LES is based on the definition of
a filtering operation: a filtered (or resolved, or large-scale) variable, denoted by
an overbar. is defined as

/C *) = /
JD

f(x')G(x,x';A)dx', (1)

where D is the entire domain, G is the filter function, and A, the filter width, is a
parameter that determines the size of the largest eddy removed by the filtering
operation. The filter function determines the size and structure of the small
scales. It is easy to show that, if G is a function of x - x' only, differentiation
and the filtering operation commute [7].

The most commonly-used filter functions are the sharp Fourier cutoff filter,
best defined in wave space1

G(k) =
1 if k < TTIA
0 otherwise,

the Gaussian filter,

G(x) = A/^exp (--4r
wA \ A"

and the top-hat filter in real space:

G{x) = [llAii\x\<AI2
\ 0 otherwise,

(2)

(3)

(4)

For uniform filter width A the filters above are mean-preserving and commute
with differentiation.

The effect of filtering a test function with increasing filter-width is shown in
Fig. 3. Although an increasing range of small scales is removed as A is increased,
the large-scale structure of the signal is preserved. In RANS, on the other hand,
the effect of all turbulent eddies would be removed by the averaging procedure.

In LES the filtering operation (1) is applied formally to the governing equa-
tions; this results in the filtered equations of motion, which are solved in LES.
For an incompressible flow of a Newtonian fluid, they take the following form:

dxi
= 0.

dui

~dt
+ d

dxj
(Üiüj) =

1 dp

pdxi dxj
+ v-

d2Ui

(5)

dxjdxj'

The filtered Navier-Stokes equations written above govern the evolution of the
large, energy-carrying, scales of motion. The effect of the small scales appears
through a subgrid-scale (SGS) stress term,

fi-i — Uilli UiU; (7)

that must be modeled to achieve closure of the system of equations.
1 A quantity denoted by a caret ^ is the complex Fourier coefficient of the original

quantity.

•943-

FEUP - Faculdade de Engenharia da Universidade do Porto

increasing A

x/L

Fig. 3. Effect of filtering a test function with increasing filter-width A.

3 Subgrid-scale models

In LES the dissipative scales of motion are resolved poorly, or not at all. The
main role of the subgrid-scale model is, therefore, to remove energy from the
resolved scales, mimicking the drain that is associated with the energy cascade.
Most subgrid scale models are eddy-viscosity models of the form

-rrTkk = —21/rSij, (8)

that relate the subgrid-scale stresses -ry to the large-scale strain-rate tensor Sy =
(düi/dxj + düj/dxi)/2. In most cases the equilibrium assumption (namely, that
the small scales are in equilibrium, and dissipate entirely and instantaneously all
the energy they receive from the resolved ones) is made to simplify the problem
further and obtain an algebraic model for the eddy viscosity [8]:

■2,77,77
VT = CA\S\S y |5| = QSijSij)1'2. (9)

This model is known as the "Smagorinsky model". The value of the coefficient C
can be determined from isotropic turbulence decay [9]; if the cutoff in the inertial
subrange, the Smagorinsky constant Cs = VC takes values between 0.18 and
0.23 (and C ~ 0.032 — 0.053). In the presence of shear, near solid boundaries
or in transitional follows, however, it has been found that C must be decreased.
This has been accomplished by various types of ad hoc corrections such as van
Driest damping [10] or intermittency functions [11].

More advanced models, that do not suffer from the shortcomings of the S-
magorinsky model (excessive dissipation, incorrect asymptotic behavior near sol-
id surfaces, need to adjust the constant in regions of laminar flow or high shear)
have been developed recently. The introduction of dynamic modeling ideas [4]
has spurred significant progress in the subgrid-scale modeling of non-equilibrium

■944-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

flows. In dynamic models the coefficient(s) of the model are determined as the
calculation progresses, based on the energy content of the smallest resolved s-
cale, rather than input a priori as in the standard Smagorinsky [8] model. A
modification of this model was proposed by Meneveau et al. [5], which has been
shown to give accurate results in non-equilibrium flows in which other models
fail [12].

Turbulence theory (in particular the Eddy-Damped Quasi-Normal Markovian
theory) has also been successful in aiding the development of SGS models. The
Chollet-Lesieur [13,14] model, as well as the structure-function [15] and filtered-
structure-function models [16] have been applied with some success to several
flows.

A detailed discussion of SGS models is beyond the scope of this paper. The
interested reader is referred to the review articles referenced above [1-3].

4 Numerical methods

In large-eddy simulations the governing equations (5-6) are discretized and solved
numerically. Although only the large scales of motion are resolved, the range of
scales present is still significant. In this section, a brief overview of the numerical
requirements of LES will be given.

4.1 Time advancement

The choice of the time advancement method is usually determined by the re-
quirements that numerical stability be assured, and that the turbulent motions
be accurately resolved in time. Two stability limits apply to large-eddy simula-
tions. The first is the viscous condition, that requires that the time-step At be
less than Atv = aAy2jv (where a depends on the time advancement chosen).
The CFL condition requires that At be less than Atc = CFLAx/u, where the
maximum allowable Courant number CFL also depends on the numerical scheme
used. Finally, the physical constraint requires At to be less than the time scale
of the smallest resolved scale of motion, r ~ Ax/Uc (where Uc is a convective
velocity of the same order as the outer velocity).

In many cases (especially in wall-bounded flows, and at low Reynolds number-
s), the viscous condition demands a much smaller time-step than the other two;
for this reason, the diffusive terms of the governing equations are often advanced
using implicit schemes (typically, the second-order Crank-Nicolson scheme). S-
ince, however, Atc and r are of the same order of magnitude, the convective term
can be advanced by explicit schemes such as the second-order Adams-Bashforth
method, or third- or fourth-order Runge-Kutta schemes.

•945-

FEUP - Faculdade de Engenharia da Universidade do Porto

■ +

0

Exact
2nd central
2nd upwind
4th central
4th Pade'
6th Pade'

^r

■

^^^. — " " ~~ — ^ \

kJk

Fig. 4. Modified wave-number for various differencing schemes.

4.2 Spatial discretization

The analytical derivative of a complex exponential f(x) = elkx is f'{x) = ikeikx\
if / is differentiated numerically, however, the result is

61
Sx

= ik e I Akx (10)

where k1 is the "modified wave-number". A modified wave-number corresponds
to each differencing scheme. Its real part represents the attenuation of the com-
puted derivative compared to the actual one, whereas a non-zero imaginary part
of k! indicates that phase errors are introduced by the numerical differentiation.
Figure 4 shows the real part of the modified wave-numbers for various schemes.
For a second-order centered scheme, for instance, k! = ks'm(kAx)/(kAx). For
small wave-numbers k the numerical derivative is quite accurate; high wave-
number fluctuations, however, are resolved poorly. No phase errors are intro-
duced.

The need to resolve accurately high wave-number turbulent fluctuations im-
plies that either low-order schemes are used on very fine meshes (such that, for
the smallest scales that are physically important, k' ~ k), or that higher-order
schemes are employed on coarser meshes. High-order schemes are more expen-
sive, in terms of computational resources, than low-order ones, but the increase
in accuracy they afford (for a given mesh) often justifies their use.

4.3 Conservation

It is particularly important, in large-eddy simulations of transitional and turbu-
lent flows, that the numerical scheme preserves the conservation properties of
the Navier-Stokes equations. In the limit Re -> oo, the Navier-Stokes equations
conserve mass, momentum, energy and vorticity in the interior of the flow: the
integral of these quantities over the computational domain can only be affected

-946-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

through the boundaries. Some numerical schemes, however, do not preserve this
property. For instance, the convective term in the momentum equations can be
cast in several ways:

Advective form : u
duj

dxj'

Divergence form :-—(ut-Uj),
OXj

Rotational form : e^u^ - T,— (v.jUj/2),
ÖXi

Skew-symmetric form :
dui d

Ui- h — (UiUj)
2 [jdxj dxj

(11)

(12)

(13)

(14)

where Uk = ekijduj/dxi. It is easy to show (Morinishi et al. [17]) that, if a typical
co-located finite-difference scheme is used, the first form does not conserve either
momentum or energy, the second conserves momentum but not energy, the others
conserve both. If, on the other hand, a control-volume approach is used, the
divergence form conserves energy but the pressure-gradient term does not. With
a staggered grid, the divergence form preserves the conservation properties of the
Navier-Stokes equations if central, second-order accurate differences are used.

Upwind schemes also have very undesirable effects on the conservation prop-
erties of the calculation, as does the explicit addition of artificial dissipation.
Even mildly upwind-biased schemes result in a significant loss of accuracy. In
incompressible flows, these type of methods are not suited to LES, and should
be avoided.

4.4 Complex geometries

For applications to complex geometries, single-block, Cartesian meshes are in-
adequate, since they do not give the required flexibility. One alternative is the
use of body-fitted curvilinear grids. LES codes in generalized coordinates have
been used, among others by Zang et al. [21,22] (who applied it to a Cartesian
geometry, the lid-driven cavity [21], and to the study of coastal up-welling [22,
23]), Beaudan and Moin [24] and Jordan [25]. Jordan [25] examined the issue of
filtering in curvilinear coordinates, and concluded that filtering the transformed
(in the generalized coordinates) equations directly in the computational space is
better than performing the filtering either of the transformed equations in real
space, or of the untransformed equations in Cartesian space.

Even if curvilinear grids are used, the application of LES to complex ge-
ometries might be limited by resolution requirements. In the presence of a solid
boundary, for instance, a very fine mesh is required to resolve the wall lay-
er. Kravchenko et al. [26] used zonal embedded meshes and a numerical method
based on B-splines to compute the flow in a two-dimensional channel, and around
a circular cylinder. The use of the B-splines allows use of an arbitrarily high or-
der of accuracy for the differentiation, and accurate interpolation at the interface

-947-

FEUP - Faculdade de Engenharia da Universidade do Porto

between the zones. A typical grid for the channel flow simulations is shown in
Fig. 5, which evidences the different spanwise resolution in the various layers,
in addition to the traditional stretching in the wall-normal direction. The use of
zonal grids allowed Kravchenko et al. [26] to increase the Reynolds number of the
calculations substantially: they performed an LES of the flow at Rec = 109410
using 9 embedded zones allowed them to resolve the wall-layer using a total
of 2 million points. A single-zone mesh with the same resolution would have
under-resolved the wall layer severely. The mean velocity profile was in excellent
agreement with the experimental data.

■ ■ m
— z

Fig. 5. Zonal embedded grid with fine grid zones near the walls and coarse zones in the
middle of the channel. The flow is into the paper. Reproduced with permission from
Kravchenko et al. [26]

Very few applications of LES on unstructured meshes have been reported to
date. Jansen [29] showed results for isotropic turbulence and plane channel. For
the plane channel, the results were in fair agreement with DNS data (the peak
streamwise turbulence intensity, for instance, was 15% higher than that obtained
in the DNS), but slightly better than the results of finite-difference calculations
on the same mesh. Simulations of the flow over a low-Reynolds number airfoil
using this method [28] were in fair agreement with experimental data. Knight
et al. [30] computed isotropic turbulence decay using tetrahedral meshes, and
compared the Smagorinsky model with results obtained relying on the numerical
dissipation to drain energy from the large scales. They found that the inclusion
of an SGS model gave improved results.

While high-order schemes can be applied fairly easily in simple geometries,
in complex configurations their use is rather difficult. Present applications of
LES to relatively complex flows, therefore, tend to use second-order schemes; the
increasing use of LES on body-fitted grids for applications to flows of engineering
interest, indicates that, at least in the immediate future, second-order accurate
schemes are going to increase their popularity, at the expense of the spectral

■948-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

methods that have been used frequently in the past. Explicit filtering of the
governing equations, with filter widths larger than the grid size may be required
in such circumstances.

5 Applications: flow in an accelerating boundary layer

A boundary layer is the region of fluid flow nearest to a solid body, in which
viscous effects (i.e., diffusion) are important. Turbulent boundary layers occur in
many technological applications, and are often subjected to favorable pressure
gradients that result in an acceleration of the velocity at the edge of the boundary
layer, the free-stream velocity. Figure 5 illustrates schematically the boundary
layer that occurs at the leading edge of an airplane wing. The fluid is accelerated
as it turns over the top side of the airfoil from the stagnation point, where its
velocity is zero.

Direction of
decreasing pressure

(dP/dx<0)

Free-stream
velocity U (x)

Boundary layer
(thickness out of scale)

Fig. 6. Sketch of the flow near the leading edge of an airfoil.

Despite the importance of this type of flow fields, however, they are not as
well understood as the canonical zero-pressure-gradient boundary layer, due to
the much wider parameter space, and to the difficulty in determining universal
scaling laws similar to those for the zero-pressure-gradient case. In fact, a large
percentage of the investigations of accelerating flows to date have concentrated
on self-similar cases, in which such scaling laws can be found.

It is recognized that, if the acceleration is sufficiently strong, turbulence can-
not be sustained. In self-similar accelerating boundary layer, this phenomenon
takes place when the acceleration parameter K reaches a critical value:

K =
dUa dPc

UL dx PUI dx
~3 x nr6. (15)

The RANS approach, which is often used in aeronautical applications, has
difficulty dealing with reversion of a turbulent flow to a laminar one, and into
the re-transition of the flow, that becomes turbulent again as the acceleration
ceases on the suction (upper) side of the airfoil. Large-eddy simulation can help
in understanding the physics that cause reversion and re-transition, as well as

■949-

FEUP - Faculdade de Engenharia da Universidade do Porto

provide accurate data that can be used for the development and validation of
lower-level RANS models to be used in engineering design.

In particular, experimental evidence indicates that the dynamics of the coher-
ent eddies play an important role in the reversion. An improved understanding
of the dynamics of these eddies in boundary layers subjected to a favorable
pressure gradient would be extremely beneficial. Apart from the considerations
about momentum transfer and mixing also valid in other flows, an additional mo-
tivating factor is provided here by the consideration that most of the theoretical
attempts to derive scaling laws are often based on multiple-scale approximations
that assume little or no interaction between inner and outer layers. The most
direct way to establish the validity of this assumption is by studying the coherent
eddies in the wall layer. Unlike RANS solutions, in which only the average flow-
field is computed, LES can supply information on the behavior of the coherent
structures.

Piomelli and co-workers [31] studied the velocity fields obtained from the
large-eddy simulation .(LES) of accelerating boundary layers with the aim to
improve the understanding of the dynamics of the coherent vortices in the re-
laminarizing flows. To separate the effect of the pressure gradient from that of
curvature, the calculation of the boundary layer on a flat plate with an accel-
erating free-stream was carried out; the configuration is similar to the flow on
the lower wall of a wind-tunnel in which the upper wall converges, as sketched
in Fig. 7. The computational domain is the shaded area in the figure.

Computational domain

\ ¥
Fig. 7. Sketch of the physical configuration. Accelerating boundary layer.

Two computations were examined: one in which the acceleration is relatively-
mild (the maximum velocity increases by 35% over the computational domain,
and K < 3 x 10~6 everywhere), and a strong-acceleration case in which the
velocity increases by almost 150%, and K > 3 x 10-6 for a significant portion of
the flow. The modification of the turbulence structure in accelerating flows was
emphasized, and it was shown how the acceleration can be associated to lower
turbulence levels and to the dynamics of the quasi-streamwise coherent vortices.

5.1 Numerical method

The governing equations(5-6) are integrated numerically using the fractional
time-step method [18,19], in which first the Helmholtz equation is solved to ob-

-950-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

tain an estimate of the velocity field that does not satisfy mass conservation; the
pressure is then computed by solving Poisson's equation, the estimated velocity
field supplying the source term. When a pressure correction is applied, the re-
sulting velocity will be a divergence-free solution of the Navier-Stokes equations.
If the Navier-Stokes equations are written as

duj

~dt

dp
dxi

Hi + vV2üi (16)

where Hi contains the nonlinear term and the SGS stresses, the time-advancement
sequence based on the second-order-accurate Adams-Bashforth method consists
of the following steps:

1. Velocity prediction (Helmholtz equation):

Vj At

2. Poisson solution:

3. Velocity correction:

|(-H; + v V) - \i-Hf-1 + v V"1)

v2-- 1 dvi
P At dxj'

üjn+1 =Vj - At^-;
dp

'dxj'

(17)

(18)

(19)

Vj is the estimated velocity. This time-advancement scheme is second-order-
accurate in time. The code uses central differences on a staggered mesh, and is
second-order accurate in space as well. Discretization of the Poisson equation
(18) results in an hepta-diagonal matrix that can be solved directly if the grid
is uniform in at least one direction.

The calculations were performed on a domain of size 400x25x25. All lengths
are normalized with respect to the inflow displacement thickness 8*; the displace-
ment thickness is an integral length scale defined as

'-£■('-£)*■ (20)

where U is the average streamwise velocity. The calculations used 256x48x64
grid points. A grid-refinement study was performed in the strong-acceleration
case, in which the number of grid points was increased by 50% in each direction.
In the accelerating-flow region {x/5* < 320) the results on the coarser mesh
matched very well those obtained with the finer one. In the re-transitioning
area, the qualitative behaviour of the flow was captured correctly, but some
differences (of the order of 15%) were observed in the statistical quantities. The
Lagrangian dynamic eddy viscosity model [5] was used to parameterize the SGS
stresses.

The cost of the computations, was 2.2 x 10~5 CPU seconds per time-step
and grid point on a 300 MHz Pentium II running Linux. Out of this CPU time,

-951

FEUP - Faculdade de Engenharia da Universidade do Porto

37% is devoted to the computation of the RHS, 25% to the computation of the
turbulent viscosity, 12% to solve the Poisson equation, and 10% to update the
velocity field and impose boundary conditions. The rest of the CPU is consumed
by I/O and computation of statistical quantities. Typically a computation on a
106 grid requires approximately 42 hours of CPU to obtain converged statistics
(sampling over 1.5 flow-through times). It is interesting to observe that the cost
of solving the Poisson equation is a small fraction of the total cost when a direct
solver (as in the present case) is used. Any other choice of solution method,
like multigrid methods, conjugate gradient methods, etc. would substantially
increase the cost of this step, which can account for a large fraction of the total
cost, depending on the problem and the computational grid.

5.2 Results

The free-stream velocity obtained from the calculation, Uoo, the pressure param-
eter K and the momentum-thickness Reynolds number, Reg = OU^/v, where 6
is the momentum thickness defined as

L \ tw /0 \ t/oo / Ua
(21)

are shown in Fig. 8 for the two cases examined. In the strong acceleration case,
despite the presence of a fairly extended region in which K exceeds 3 x 10-6,
the Reynolds number never goes below the critical value Reg ~ 350. Thus one
would expect the flow to become less turbulent, but not to revert fully into a
laminar one.

The streamwise development of several time-averaged and integral quantities
is shown in Fig. 9. As a result of the free-stream acceleration, the boundary layer
becomes thinner, as shown by the distributions of S* and 6. The skin friction
coefficient based on the local free-stream velocity, C/ = 2TW/pU^ (where rw

is the wall stress), initially increases, but, as the flow begins to relaminarize, it
decreases in both the mild- and strong-acceleration case.

Although the pressure-gradient parameter K is well above the critical value
of 3 x 10~6 in the strongly accelerating case, the acceleration is not sustained
long enough for the Reynolds number to be reduced below the critical value,
Reg ~ 350. Thus, full relaminarization does not occur; the shape factor H only
reaches a value of 1.6 (the shape factor associated with the laminar Falkner-
Skan similarity profile for sink flows of this type is 2.24). The mean velocity
profile, however, is significantly affected by the acceleration, even in the mild
acceleration case.

As the flow is gradually accelerated, the turbulence adjusts to the perturba-
tion; the turbulent quantities, however, lag the mean flow. The turbulent kinetic
energy, for instance, increases in absolute levels, although not as fast as the ki-
netic energy of the mean flow. Thus, the contours of the turbulent kinetic energy
normalized by the kinetic energy of the mean flow, shown in Fig. 10, highlight
a significant drop in the turbulent kinetic energy in the region of acceleration.

■952-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

U_, Strong acceleration
U_, Mild acceleration

Fig. 8. Spatial development of the free-stream velocity Uoo, the acceleration parameter
K, and the momentum-thickness Reynolds number Reg in the accelerating boundary
layer.

■953-

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig. 9. Spatial development of mean quantities in the accelerating boundary layer, (a)
Displacement thickness <T; (b) shape factor H; (c) skin-friction coefficient C/.

954-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

45 1

' '•-'■. I i ' 1 J

\ \ \ i Strong acceleration
"■■***... i \ 1 ^ / /

^ \ \ \ / /
- \ \ \ \ ^ ̂

 -^ 0#
6 /'DS'

■ ^■^.■■■'yj? '■■'.
- ■% '•. \

-'''' ,'' ■ '

s^="— •■:-;n'finQ':^-.-:-::.-o.oi2.r
•■: -J.Q15. ;_ _. _ -^
,--■■• ^^ r. — "■-,-■

 0.006 —"::"0.009--'::.:--:::. V ..
, r- :o«H*iM

100 200 300

45 1

<-\... N.. ."'
\ Mild acceleration

0.0^
■-. \ , •' ...V- -•'

■

'd> - -■

■

.. ■■.

:1 - -— :^_ =-.- 0009 ,m= ,= ..==E^—i- -:.-0.012.

0 100 200 300
x/5„

Fig. 10. Contours of the turbulent kinetic energy, normalized by the free-stream kinetic
energy in the accelerating boundary layer.

Paradoxically, in many turbulent flows, whenever energy is added through
the mean flow, the energy of the turbulence initially decreases, as the coherent
vortices adapt to the perturbation. This process often involves disruption of the
vortical structures prior to their re-generation. Such is the case in this config-
uration as well: the vortical structures are visualized in Fig. 11 as isosurfaces
of the second invariant of the velocity-gradient tensor, Q, a useful quantity to
visualize the regions of high rotation that correspond to the coherent vortices.
In the zero-pressure-gradient region near the inflow (top picture) many vortices
can be observed, and they are roughly aligned with the flow direction, but form
an angle to the wall. This picture is typical of zero-pressure-gradient boundary
layers. In the accelerating region, on the other hand, fewer eddies are observed,
and those present are more elongated and more closely aligned in the streamwise
direction. This structure can be explained based on the fact that the mean ve-
locity gradient has the effect of stretching and re-orienting the vortices. As they
are stretched, their vorticity is increased by conservation of angular momentum,
while their radius is decreased. The smaller, more intense eddies thus generated
are more susceptible to be dissipated by viscous effects.

This calculation highlights a significant advantage of LES over lower-level
models. Whenever the coherent eddies play an important role in the flow evolu-
tion, RANS calculations (in which the effect of all turbulent eddies is averaged
out) cannot predict the flow development accurately. LES, on the other hand,

-955-

FEUP - Faculdade de Engenharia da Universidade do Porto

220

160

Fig. 11. Instantaneous iso-surfaces oiQ(5l/U0)
2 = 0.02 in the strong-acceleration case.

Top: zero-pressure-gradient region. Bottom: acceleration region.

■956-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

has a better chance of following the dynamics of the coherent structures, as well
as their response to the imposed perturbations.

6 Applications: flow in an oscillating channel

6.1 Motivation

Inherent unsteadiness of the driving conditions characterizes many turbulent
flows, both natural (e.g. the gravity wave induced in ocean-bottom boundary
layers, the blood flow in large arteries, the flow of air in lungs) and artificial
(such as the flow in the intake of a combustion engine or the flow in certain
heat exchangers). The characterization of unsteady boundary layers is crucial
to many disciplines, such as the study of sediment transport in coastal waters,
the biology- of blood circulation, and so on; moreover, as was pointed out by
Sarpkaya [32], by looking at features that are common to steady and unsteady
boundary layers, we may better understand the underlying physics of turbulent
flows altogether. As already recognized by Binder et al. [33], there are no special
technical difficulties in performing DNS of pulsating flows. On the other hand,
the same authors point out that the oscillating nature of the forcing is felt by
the small scales too, so that before trusting the outcome of a LES based on
standard closures, a careful (a posteriori) comparison with DNS has to be done.
This is particularly true for eddy viscosity models, which rely on the combined
assumptions that the SGS stress tensor r^ is aligned with the rate of strain and
that the eddy viscosity is proportional to the magnitude of the stress. The latter
postulate is somewhat relaxed for the dynamic Smagorinsky model of Germano
et al. [4], since the eddy viscosity depends on the flux of energy towards the
subgrid scales.

AP/L = A + Bcocosotf

i'l • h H \

Fig. 12. Sketch of the physical configuration. Oscillating channel flow.

To study the response of turbulence to an oscillating mean flow, a plane-
channel flow driven by an oscillating pressure gradient was studied. The physical
configuration is illustrated in Fig. 12: the flow between two flat plates that
extend to ±oo in the streamwise (ar) and spanwise (y) directions is simulated.

•957-

FEUP - Faculdade de Engenhaha da Universidade do Porto

To drive this periodic flow, a pressure gradient per unit length is introduced
on the right-hand-side of the Navier-Stokes equations as a source term. In the
case under investigation, this pressure gradient is given by 1 x 10~4 + uicosut,
where u) is the angular frequency of the oscillation. This is the kind of flow
considered by Binder et al. [33]. The flow admits a laminar solution, which
is a trivial extension of the Stokes problem. The flow first decelerates (as it is
subjected to the adverse pressure gradient during the first half of the cycle), then
accelerates again. During the acceleration phase, as observed before, the flow
tends to relaminarize, whereas the adverse-pressure-gradient has the opposite
effect, and makes the flow more turbulent.

Since the core of the flow, where the velocity is large, is dominated by con-
vective effects, while the regions near the solid boundary, where the velocity
gradients are significant, are dominated by diffusive effects, there is a disparity
in time-scales between these two regions: the diffusive time-scale being small-
er than the convective one by orders of magnitude. Thus, as the frequency is
changed, one would expect a significantly different coupling between the near-
wall region (the inner layer) and the core of the flow (the outer layer). To study
this coupling, calculations were carried out for a range of frequencies.

Although the geometry is rather simple, and the grids used relatively coarse,
this calculation still requires a large amount of CPU time. This is due to the long
integration time necessary to achieve convergence. Since phase-averaged data is
required, between eight and ten cycles of the oscillation are needed to obtain
converged statistical samples. If the frequency is low, the equations of motion
must be integrated for very long integration.

6.2 Numerical method

The starting point for this calculation is a well-known serial spectral code for
the solution of the filtered Navier-Stokes equation in a channel geometry [34,35].
Fourier expansions are used in the homogeneous (horizontal) directions, while
Chebychev collocation is used in the vertical direction. The code is very high-
ly optimized for a vector architecture. Time-advancement is performed using
the fractional time-step method described above; however, the implicit Crank-
Nicolson method is used for the vertical diffusion and a low-storage third-order
Runge-Kutta scheme is employed for the remaining terms. The procedure de-
scribed in Section 5.1 still applies, with few obvious modifications. Each sub-step
of the Runge-Kutta scheme follows the sequence:

1. Compute the nonlinear terms H" and the horizontal diffusive terms vV2Uin

with information at time tn. Both these terms are computed in real space.
2. Transform the right-hand side Hn + i/V2Uin into Fourier space.
3. Update the predicted solution in Fourier space:

/ vAt 8 \ ^ / vAt 3U» A ~ , x

by solving implicitly the vertical diffusive problem. Since a Chebychev col-
location method is used in the vertical direction z a full matrix obtains for

■958-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

each mode, which is inverted iteratively by a Generalized Minimum Residual
method.

4. Solve the Poisson problem for the pressure in Fourier space:

dz *' y P~ At
-i(kx + ky)' + (23)

again using a Generalized Minimum Residual method to solve the system of
linear equations.

5. Update the solution:
= vj - AtVp. (24)

An initial series of numerical experiments was performed on an SGI Origin
2000 with 32 R10000 processors running at 195 MHz, each equipped with 640
Mb of Ram and 4Mb of cache, owned by the University of North Carolina. Each
processor is rated at 390 MFLOPS. Four discretizations were chosen, 32x32x32,
64x64x64, 128x128x96 and 128x192x128. The serial code experience a drop
in performance as the domain grows, from 60 MFLOPS to about 19. This is
due to the limited cache, which acts as a bottleneck. The problem is made more
acute by the fact that the discrete Fourier transform, which is the heart of the
code, is a nonlocal operation. Frigo and Johnson [36] performed extensive testing
of different FFT routines on cache based machines, and, without exception, all
routines showed a marked slowdown when a certain critical size (both machine-
and routine-dependent) is reached (see, for instance, Fig. 4 of their paper).

6.3 The parallel code

The current trend in supercomputer technology is towards achieving raw com-
putational power by assembling a large number of relatively inexpensive nodes,
based on mass produced RISC CPUs connected by high-speed data path. Ex-
amples are the Origin 2000 by SGI (R10000), the IBM SP/6000 (Power PC)
and the Cray T3D (ALPHA). While it is appealing to be able to obtain large
theoretical computational speeds at a fraction of the cost of traditional vector
based machines, this paradigmatic shift requires a re-examination of the existing
codes. A case in point is the spectral Navier-Stokes solver discussed in the pre-
vious section. To parallelize it, we begin by noticing that the computationally
intensive steps of solving the Helmholtz and Poisson problems amount to solving
imax xjmax ID problems, where imax (jmax) is the number of collocation points
in the streamwise (spanwise) direction.

The load then can be distributed among p processor. A Single Program Mul-
tiple Data (SPMD) approach was adopted. Each process executes essentially
the same operations on different portions of the domain, which are private to
them. Message passing is used to exchange information between processes, using
Message Passing Interface (MPI) library calls.

The domain is sliced along either the z or the x direction, and each proces-
sor owns a slice. During the computation of the nonlinear term, the domain is

-959-

FEUP - Faculdade de Engenharia da Universidade do Porto

sliced along the z direction (see Fig. 13). When vertical derivatives are need-
ed, a transposition is performed, in which process j sends sub-block i of the
domain to process z, and receives in turn the sub-block j from process i. MPI
implements this kind of alltoall scatter/gather operation transparently. After
the nonlinear term is calculated, the domain is swapped so that each process
owns vertical slices, and the Helmholtz and Poisson problems are solved with-
out further swapping. At the end, the solution is swapped back into horizontal
slices and the cycle begins again. Incidentally, this approach predates the use of
parallel computers, being used for DNS on Cray X-MP to feed the fields into
core memory one slice at a time (see, for example, [37]).

/ /
CPUO

CPU 1

CPU 2

CPU 3

CPU 4

Swap ■/

c c c c c
p P P :P P
u u u u u
0 1 :2 3 4

Fig. 13. The domain is split among processes (CPUs) either along the z (left) or the
x (right) coordinate. An alltoall scatter/gather is used to go from one configuration to
the other.

6.4 Speedup and scalability

The performance of a parallel program is measured by the speedup factor 5,
denned as the ratio between the execution time Ta of the serial program and the
execution time of the parallel version T„ (see Pacheco [38]). In our approach,
the load is evenly balanced between processes (with the negligible exception of
I/O, which is handled by one process), so that an equivalent measure is the
efficiency E, defined as the ratio between Ta and the total time consumed by
the p processes. In general, for a given machine, E = E(n,p), where n is the
size of the problem being solved. In Table 1 we show the efficiency for different
values of n and p, with the relative MFLOPS in parenthesis.

The striking result is that it is possible to achieve a super-linear speedup.
This is made possible by the fact that the smaller parallel threads use the cache
more efficiently than the serial code. For instance, for the grid 128x128x96,
the serial code reuses on average a L2 cache line 4.6 times before discarding it;
using 4 processes the value per process increases to 7.3, while with 8 becomes as
high as 21.4. The gain is of course offset by the overhead generated by message

•960-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Size p = 2 p = 4 p = 8 p= 16
32x32x32 .8 (84)
64x64x64 .93 (81) .81 (120)

128x128x96 1.1 (88) 1.3 (168)
128x192x128 1.1 (168) .91 (276)

Table 1. Efficiency of spectral parallel Navier Stokes solver and (in parentheses)
achieved MFLOP rate.

passing. However, due to the efficient implementation of MPI on the Origin 2000,
we found that the time spent swapping data between processes represents less
that 10% of the total time, in the worst case.

6.5 Results

The Reynolds number based on channel height and the time-averaged centerline
velocity was 7500 for all calculations. Simulations were carried out for several
values of the frequency of the driving pressure-gradient, resulting in a Reynolds
number, based on the thickness of the laminar oscillating layer, S = (2V/UJ)

1
/'

2

and the oscillating component of the velocity, ranging between Res = 100 and
1000. The low Res case was simulated using both a DNS on a 128 x 128 x 96 grid,
and an LES using the dynamic eddy-viscosity model [4] on the same domain,
discretized using a 32 x 32 x 49 grid. All the other cases were simulated only
using the LES approach.

Figure 14 shows the centerline velocity (normalized by the uT = (r^/p)1/2,
where p is the fluid density and TW is the shear stress at the wall) and TW itself.
The abscissa is the normalized phase, 0 = ut. While the centerline velocity is in
phase with the imposed pressure gradient, the wall stress is not. At high frequen-
cies a sinusoidal shape is preserved, whereas for low frequencies the distribution
of TW becomes very asymmetric. This is due to quasi-relaminarization of the flow
during the acceleration phase, which is followed by a dramatic instability in the
deceleration one. Good agreement with the DNS can be observed.

Figure 15 shows the mean velocity profiles at several phases. Good agreement
is again observed between the LES and the DNS for the Res = 100 case. At
this frequency a region of reversed flow is present, since the thickness of the
oscillating Stokes layer reaches into the buffer layer and the flow reverses near
the wall during the decelerating phase (without detachment of the boundary
layer). For lower frequencies such reversal is not observed.

Different behaviors of the near-wall region as the frequency is decreased are
evident in Fig. 15. A more dramatic illustration of the same phenomena can be
seen in Fig. 16, in which contours of the turbulent kinetic energy are shown.
At the highest frequency the inner and outer layers appear largely decoupled. A
thickening of the inner layer can be observed at the end of the deceleration phase
(0/27T ~ 0.5), which, however, does not propagate far into the outer layer: by

■ 961 -

FEUP - Faculdade de Engenharia da Universidade do Porto

<Sv
£*'

30
~

_ 25

<L 20

CSA
gs" ;

15 v7 -
10

5 (a) ;
0 i I . , ,

0 0.1 0.2 0.3 0.4 0 5 0.6 0.7 0.8 0.9 1

 He =100
- - He = 200
 He »500
 He =1000
A He =100 DNS

0.5

<)>/27C

0.8 0.9

Fig. 14. (a) Centerline velocity and (b) wall stress in the oscillating channel.

z/H ~ 0.2 the contours are nearly undisturbed. At lower frequencies, however,
the inner layer has the time to adapt to the perturbation introduced by the
pressure pulse; at the lowest frequencies in particular the flow can be observed
to relaminarize, as indicated by the absence of turbulent kinetic energy. A shift
of the more quiescent region of the flow from <j>/2n ~ 0.8 towards 4>/2n ~ 0.5
can also be observed, which can also be explained based on the increased time
that the inner layer has to adapt to the outer-flow perturbation.

The turbulent eddy viscosity, Fig. 17, adjusts to the unsteady perturbation.
It is not in phase with the local shear and vanishes as the flow relaminarize
during the earlier portion of the accelerating phase. This is in agreement with
results from the DNS concerning the evolution of the turbulent kinetic energy
production term.

7 Conclusions

Large-eddy simulations have shown the ability to give accurate prediction of the
turbulent flow in configurations in which the flow is not in equilibrium, albeit
in fairly simple geometric configurations. This type of calculation can now be
routinely carried out on desktop workstations, with reasonable throughput times.
Parallel computers are required in more complex geometries, in flows in which
large computational domains are necessary, and in cases in which long averaging
times are required to obtain converged statistics.

■962-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

—| 1 1- 1 1 '■ ' !—

^-a-*-*"*—*"*"* * "*• * "■ "~
- . o ■ ■ • • o ■ • •' o o o o o o o o • ■

^0'0"0"° Ä«=100
0.15 0.2 0.25 0.3

Re = 200

2

i 1 / **. "* ,-— ■1 .«. WJ-J.-^ ■■■

1
1

= - - - - .-- r -T ^

i

Re = 500

2

^ 1

0

tfe=1000

. - it/2

0.15
z/tf

Fig. 15. Velocity profiles in the oscillating channel.

•963-

FEUP - Faculdade de Engenharia da Universidade do Porto

" 02

0.1

o

Re= I00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 16. Contours of the turbulent kinetic energy (normalized by the mean wall stress)
in the oscillating channel. 26 equi-spaced contours between 0 and 12.5 are shown

■964-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 17. (a) Phase-averaged eddy viscosity (normalized by the molecular viscosity) at
z/H = 0.0265. (b) Phase-averaged dU/dz at z+ = 15. (c) Phase-averaged mid-channel
velocity. Res = 100.

■965-

FEUP - Faculdade de Engenharia da Universidade do Porto

The next stage in the development of this technique will involve the use of
LES in more complex geometries. Challenges that need to be met to achieve
this goal include the development of energy-conserving, high-order schemes in
generalized coordinates or on unstructured meshes, and of accurate wall mod-
els to simulate the near-wall region without resolving in detail the inner-layer
eddies. Combustion models, and SGS models for compressible applications are
other areas in which additional research is required to exploit fully the potential
of LES. Applications in complex geometries, especially those including combus-
tion, multi-phase flows, or mean-flow unsteadiness, are not likely to be feasible
on desktop workstations. Memory-intensive problems will also require parallel
machines.

Researchers who use large-eddy simulations are typically end-users of the al-
gorithmic improvements developed by mathematicians and computer scientists.
A close collaboration between workers in these fields is, therefore, desirable in
order to achieve some progress in the challenging area of turbulence prediction
and control.

Acknowledgments

UP and EB acknowledge the support by the NASA Langley Research Center, un-
der Grant No. NAG 1-1828, monitored by Dr. Craig L. Streett. AS acknowledges
the support by the National Science Foundation under Grant OCE 99-10883,
monitored by Dr. Stephen P. Meacham.

References

1. M. Lesieur and O. Metais. Ann. Rev. Fluid Mech. 28, 45 (1995).
2. U. Piomelli. Progress Aero. Sei. 35, 335 (1999).
3. C. Meneveau and J. Katz. Annu. Rev. Fluid Mech. 32, 1 (2000).
4. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. Phys. Fluids A 3, 1760

(1991).
5. C. Meneveau, T. S. Lund, and W. H. Cabot. J. Fluid Mech. 319, 353 (1996).
6. G. L. Brown and A. Roshko J. Fluid Mech. 64, 775 (1974).
7. A. Leonard Adv. Geophys. 18A, 237 (1974).
8. J. Smagorinsky. Mon. Weather Rev. 91, 99 (1963).
9. D. K. Lilly. In Proc. IBM Scientific Computing Symposium on Environmental Sci-

ences. Yorktown Heights, N.Y., 195 (1967).
10. E. R. Van Driest. J. Aero. Sei. 23, 1007 (1956).
11. U. Piomelli, T. A. Zang, C. G. Speziale, and M. Y. Hussaini. Phys. Fluids A 2,

257 (1990).
12. F. Sarghini, U. Piomelli, and E. Balaras. Phys. Fluids 11, 1607 (1999).
13. J. P. Chollet and M. Lesieur. J. Atmo. Sei. 38, 2747 (1981).
14. J. P. Chollet. In Turbulent Shears Flow IV, edited by F. Durst and B. Launder,

(Springer-Verlag, Heidelberg), 62 (1984).
15. O. Metais and M. Lesieur. J. Fluid Mech. 235, 157 (1992).
16. F. Ducros, P. Comte, and M. Lesieur. J. Fluid Mech. 326, 1 (1996).

•966-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

S. Lund, O. V. Vasilyev, and P. Moin. J. Comput. Phys. 143, 90 17. Y. Morinishi, T.
(1998).

18. A. J. Chorin. Math. Comput. 22, 745 (1969).
19. J. Kim and P. Moin. J. Comput. Phys. 59, 308 (1985).
20. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods in

fluid dynamics (Springer-Verlag, Heidelberg) (1988).
21. Y. Zang, R. L. Street, and J. Koseff. Phys. Fluids A 5, 3186 (1993).
22. Y. Zang, R. L. Street, and J. Koseff. J. Comput. Phys. 114, 18 (1994).
23. Y. Zang, R. L. Street, and J. Koseff. J. Fluid Mech. 305, 47 (1995).
24. P. Beaudan, and P. Moin. Report No. TF-62, Dept. Mech. Eng., Stanford Univer-

sity, Stanford, CA 94305 (1994).
25. S. A. Jordan /. Comput. Phys. 148, 322 (1999).
26. A. Kravchenko, P. Moin, and R. D. Moser. "Zonal embedded grids for numerical

simulations of wall-bounded turbulent flows." J. Comput. Phys. 127, 412 (1996).
27. D. K. Lilly. "A proposed modification of the Germano subgrid-scale closure

method." Phys. Fluids A 4, 633 (1992).
28. K. E. Jansen. In Ann. Res. Briefs-1996. Center for Turbulence Research, NASA

Ames/Stanford Univ., 225 (1996).
29. K. E. Jansen. In Advances in DNS/LES, edited by C. Liu and Z. Liu (Greyden

Press, Columbus), 117 (1997).
30. D. Knight, G. Zhou, N. Okong'o, and V. Shukla. "Compressible large eddy simu-

lation using unstructured grids." AIAA Paper 98-0535 (1998).
31. U. Piomelli, E. Balaras, and A. Pascarelli. To appear, J. of Turbulence, (2000).
32. T. Sarpkaya. J. Fluid Mech., 253, 105 (1993).
33. G. Binder, S. Tardu and P. Vezin. ' Proc. R. Soc. Lond. A, 451, 121 (1995).
34. T. A. Zang and M. Y. Hussaini. Appl. Math. Comput. 19, 359 (1986).
35. U. Piomelli. Phys. Fluids A 5, 1484 (1993).
36. M. Frigo and S. G. Johnson. In ICASSP Conf. Proc, 3, 1381 (1998).
37. R. D. Moser and P. Moin. NASA TM-85071
38. P. S. Pacheco. Parallel Programming with MPI, (Morgan Kaufmann, San Francis-

co) (1997).

-967-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Neural Network Based Tool for
Semi-Automatic Code Transformation

V. Purnell, P. H. Corr and P. Milligan.

School of Computer Science,
The Queen's University of Belfast

Belfast BT7 INN
N. IRELAND

p. corr@qub.ac.uk

Abstract. A neural network based tool has been developed to assist in the
process of code transformation. The tool offers advice on appropriate
transformations within a knowledge-driven, semi-automatic parallelisation
environment. We have identified the essential characteristics of codes relevant
to loop transformations. A Kohonen network is used to discover structure in the
characterised codes thus revealing new knowledge that may be brought to bear
on the mapping between codes' and transformations or transformation
sequences. A transform selector based on this process has been developed and
successfully applied to the parallelisation of sequential codes.

1 Introduction

Over the past decade there has been a dramatic increase in the range of different
multiprocessor systems available in the marketplace ranging from high-cost
supercomputers, such as the Cray T3D, to low-cost workstation clusters. It is fair to
say that the low-cost architectures have proven attractive to the majority of potential
scientific and engineering users, particularly for applications that need to exploit the
raw power now available. However, their appeal is often tempered by deficiencies in
the attendant program development environments. Indeed, these deficiencies are
evident in all multiprocessor development environments. It may be pejorative, but
nonetheless accurate, to characterise the majority of typical users of multiprocessor
systems as unskilled in the arts of parallelisation. Typically, they will be confirmed in
the use of essentially sequential languages such as Fortran and have neither the time
nor the desire to understand the intricacies of parallel development techniques or the
peculiarities of target architectures in their endless search for enhanced performance.
For such users there is a compelling need for the development of environments which
minimise user involvement with such complications. In short, if novice users are to
realise the potential of multiprocessor systems then much of the expert knowledge
required to develop parallel code on multiprocessor architectures must be provided
within the development environment.

The ideal solution is to provide a fully automated solution in which a user can
simply input a sequential program to the system, be it migrated or newly developed,
and receive as output an efficient parallel equivalent. Automatic parallelisation scores

-969-

FEUP - Faculdade de Engenharia da Universidade do Porto

high on expression, as programmers are able to use conventional languages, but is
problematic in that it requires inherently complex issues such as data dependence
analysis, parallel program design, data distribution and load balancing issues to be
addressed. Existing parallelisation systems adopt a range of techniques in an effort to
minimise or eliminate the complexity inherent in the fully automated approach.
Almost invariably the burden of providing the necessary guidance and expertise
lacking in the system falls back on the user. Indeed, existing systems may be
classified by the extent to which user interaction is required in the process of code
parallelisation. At one end of the spectrum is the purely language based approach in
which the user is entirely responsible for determining how parallelism is to be
achieved by annotating the code with appropriate compiler directives. At the other
end of the spectrum is the goal of a fully automatic parallelisation environment,
independent of application domain and requiring no user guidance. Between these
extremes lie a number of environments which permit the user to interact with the
system during the code development process. These environments may offer differing
degrees of guidance and interaction in, for example, selecting appropriate program
transformations or deciding on a particular data partitioning scheme.

Recently attention has focused on the use of knowledge bases and expert systems
as a means of compensating for lack of user expertise. Such approaches have
achieved a degree of success but to date have taken a rather narrow view of the field
of knowledge engineering. Alternative methods of extracting and representing
knowledge directly from the code itself have not been widely applied. Genetic
programming techniques applied to program restructuring have been explored by
Ryan et. al. [1] with notable success while neural networks have been variously
applied to load balancing and data distribution [2, 3]. It is our belief that if a system is
to be developed capable of offering quality strategic guidance for parallelisation then
it must be underpinned with an appropriate knowledge model in which expert
knowledge and information implicit in the code itself may be captured and
synthesised within a coherent framework [4].

The research reported here complements and extends previous work in developing
an integrated software development and migration environment for sequential
programmers. The result of this work, KATT, (Knowledge Assisted Transformation
Tools) has been reported elsewhere [5, 6, 7]. KATT began by employing expert
systems only. As various neural network based tools are developed they have been
integrated into the environment in line with the underlying knowledge model [8]. This
paper reports the development of one of these neural-based components, a transform
selector, and reports results obtained from its use with real codes.

2 The KATT Environment

Architecturally, KATT may be considered to consist of three main modules, namely:

• The input handler - responsible for converting input codes to an intermediate,
language independent, graphical representation.

• The transformation module - which has access to a suite of correctness preserving
graph manipulation routines used to restructure the graphical representation of the
code produced by the input handler. The result is a new, functionally equivalent

-970-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

version of the program that is more amenable to parallelisation, i.e., with
dependencies removed or reduced.

• The output handler - responsible for generating actual parallel code, based on the
modified graph and evaluating its performance on the target architecture.

KATT employs a source-to-source restructuring model. The explicit knowledge
available within the environment is provided by two expert systems; one to aid the
user in selecting appropriate code transformations, the other to advise on the best
distribution of code and data on the target architecture.

Neural networks however offer a means of accessing an alternative source of
knowledge relevant to parallelisation. By extracting domain knowledge implicit in the
code itself neural networks can provide an alternative low-level, signal-based, view of
the parallelisation problem in contrast to the high-level, symbolic view offered by
expert systems. Combining both paradigms within a coherent knowledge model will
improve the ability of KATT to offer strategic intelligent guidance to the user through
access to a broader and deeper knowledge model.

3 Development of the Transform Selector

We use an SPMD model that concentrates on detecting and realising potential
parallelism in computationally intensive sequential code loops. To do this requires
that any loop carried dependencies, the principal inhibitors to parallelisation, can be
detected and removed by a suitable transformation. What is required is a tool capable
of taking an input code loop and recommending an appropriate transformation, or
transformation sequence, that will reduce or eliminate any dependencies in the input
code.

3.1 Choice of the Neural Paradigm

A number of network architectures were considered as potential solutions. One
immediate problem that must be addressed is the nature of the data available to train
the network. While there is an abundance of code loops available for input data there
is no corresponding source of output data where suitable transformations, or
transformation sequences, have been identified for each input code loop. In general, it
requires an expert to specify the most appropriate transformations for a given input
code. Casting the problem as one requiring supervised learning (e.g., a multilayer
perceptron) would inevitably result in a network which encapsulated the opinion of a
given expert. As agreement among experts is rare in the field of parallelisation the
value of such a trained network would be questionable.

Selecting the "best" sequence of loop transformations can also be viewed as an
optimisation problem. Here the problem is formulated as one of finding the optimum
sequence of transformations that satisfy the dependence constraints of the code loop
under consideration while minimising execution time (e.g., a Hopfield network or a
Boltzmann machine). However, mapping the dependencies to network weights and
interpreting the eventual solution makes this approach difficult from the
representational point of view.

-971

FEUP - Faculdade de Engenharia da Universidade do Porto

The Kohonen self-organising network was eventually identified as the most
appropriate neural component for the transform selector. The principal reason for this
choice is that the Kohonen network employs an unsupervised learning algorithm in
which it is not necessary to know in advance the 'correct' output for a given input.
Once trained the organised network topology reflects the statistical regularities of the
input data. This information is useful for exploratory data analysis and visualisation of
high dimensional data.

3.2 Data Sources

The training data used to develop the Kohonen network is derived from a suite of
standard Fortran-77 benchmarking codes. The sources include the Livermore loops
[9] and Dongarra's parallel loops [10]. Loops from these sources represent examples
of real code; an important consideration if the eventual transform selector is to be
capable of dealing with the intricacies of real input codes. A selection of Banerjee's
loops [11] were also included. By comparison with the other sources, these are not
'real' codes but were included for their rich data dependence information. The
eventual loop corpus contains 110 loops with a total of almost 16,000 dependencies.

3.3 Code Characterisation

Code characterisation is a necessary pre-processing stage in which a set of feature
vectors is generated for each loop in the code set. It is important that the
characterisation scheme employed should capture information influential in the
selection of loop transformations, particularly information on the nature of any
dependencies present in the loop. The characterisation scheme used encodes 12
features for each loop in a 20 component feature vector. Details of the
characterisation scheme are shown in Table 1.

It is important that the characterisation scheme captures the complexities or real
codes. In particular, the scheme must deal with symbolic dependencies where
symbolic terms occur in loop bounds or array subscript expressions. Such symbolic
terms impede dependence analysis yet empirical studies have shown that over 50% of
array references and 95% of loop bounds in real programs contain non-linear,
symbolic, expressions [10, 12]. Where precise dependence information is
unobtainable the characterisation scheme encodes one of five possible reasons (Cat in
Table 1).

A tool has been developed to automatically generate the set of feature vectors from
Fortran-77 input code where each feature vector corresponds to a single loop carried
dependence. As such, a given loop may give rise to a number of feature vectors, one
for each dependence. The characterisation scheme also provides contextual
information through a strength rating representing the proportion of each particular
dependence type in a loop. This characteristic provides a measure of the complexity
of the loop in terms of data dependencies.

While the capability to deal with real codes is essential it is also necessary to limit
the complexity of the problem in order to limit the dimensionality of the feature
vectors. To this end all loops in the loop corpus contain assignment statements only in
the loop body, are normalised and either single or perfectly double nested.

-972-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 1. Characterisation Scheme

Feature Mnemonic Vector
Components

Type of dependence -
flow, anti, output or input

Type 3

Direction vector Direction 2
Category when precise
information is unobtainable

Cat 5

Flow dependence
strength in loop

5,

Anti dependence
strength in loop

5a

Output dependence
strength in loop

50

Input dependence
strength in loop

5,

Lower bound of outer loop LBI
Upper bound of outer loop UBI
Lower bound of inner loop LBJ 2
Upper bound of inner loop UBJ 2

3.4 Network Training

The feature vectors generated from the Fortran-77 loop corpus are used as input to
train the network. Since the Kohonen network uses an unsupervised learning
algorithm it is not necessary to know a priori which transformations are appropriate
for a given loop. During training the Kohonen layer undergoes a self-organising
process in which a two-dimensional map is produced representing the higher
dimensional input space. An essential feature of the map produced is that it preserves
the topology of the input space in that inputs which are 'close together' in input space
are mapped to points 'close together' on the Kohonen layer. In effect, points on the
Kohonen map represent prototypes, or cluster centres, for the features vectors used
during training. Thus, a feature vector input to the trained network will be represented
by a single prototype on the mapping layer.

It is a fundamental assumption in this work that input codes which map to the same
prototype on the Kohonen mapping layer, and are therefore 'close together' in input
space, are amenable to the same transformation. The essence of the transformation
framework then is to establish which transformation(s) are most appropriate for each
prototype represented in the Kohonen layer.

3.5 Labelling the Map

A reverse engineering approach was adopted in labelling each prototype with the
corresponding transformation(s). Firstly, five of the most useful and widely used
transformations were identified. The transformations chosen were:

-973-

FEUP - Faculdade de Engenharia da Universidade do Porto

- D Loop Distribution
- I Loop Interchange
- S Loop Skewing
- E Scalar Expansion and
- R Statement Reordering

For each transformation a data set of representative codes was established where it is
known that the code is amenable to the transformation. Each code is then
characterised and the resultant feature vector presented to the trained network. In each
case one prototype in the mapping layer is identified which best represents the input
and that prototype labelled with the associated transformation. The result is a
transformation framework; a labelled map that may be used to suggest
transformations that should be applied to an input code in an attempt to reduce or
remove loop carried dependencies.

4 Results

As an illustrative example of how the transformation framework operates, consider
the following loop:

DO I = 4,200
A(I) = B(I) + C(I)
B(I+2) = A(I-l) + A(I-3) + C(I-l)
A(I+1) = B(2*I+3) + 1

CONTINUE

This loop is input to the characterisation tool and four feature vectors, X, to X4,
returned - one for each loop carried dependency identified. Each feature vector is
presented in turn to the Kohonen network and the position of the corresponding
prototypes noted. These are shown at grid co-ordinates (7,11), (2,8), (4,1) and (5,11)
on the labelled map in figure 1.

Notice that the inputs do not all fall directly onto labelled prototypes. Table 2
shows the distances from inputs to the nearest labelled prototypes.

The best choice of transformation appears to be loop skewing because it is the
closest labelled prototype to a number of inputs and should remove most
dependencies. However loop skewing is illegal, i.e., it does not apply to ID loops.
The next best transformation is loop distribution, which is legal. Applying loop
distribution results in two separate loops with fewer dependencies in each.

DO I = 4,200
SI: A(I) =
S2: B(I+2)

CONTINUE

B(I) + C(I)
= A(I-l) + A(I-3) + C(I-l)

DO I = 4,200
S3: A(I+1)

CONTINUE
B(2*I+3) + 1

A second iteration of the procedure is now performed. After loop distribution the
second loop is parallel, a fact detected by the characterisation tool resulting in no

-974-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

further transformations being performed on this loop. The first loop has now
dependencies at SI 8,. S2 by A, S2 8r SI by B, and S2 8{ S2 with A. Repeating the
same process as before results in two vectors, Y, and Y„ shown plotted at their
corresponding prototypes in figure 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 IE

R
S D S

2 D mm D 1

3

■
s S

4 D
S

D D s DI

5 D

6 D D

7 D
ER

8 E

9

10 IS

11

12

Fig. 1. Labeled map showing inputs X,, X„ X, and X4 from the first iteration and Y,, Y, from
the second iteration

Table 2. Distance from input vectors to nearest labelled prototypes

Input Nearest
Prototype(s)

Transform Distance

x, (6,10) Distribution 1.414
x, (1,8), (2,7),

(3,8)
Skewing
Distribution

1.000
1.000

x. (1,2) Interchange
or Expansion
or Reordering

3.162

x. (5,11) Skewing 0.000

It can be seen from the map that Y, is closest to a prototype representing loop
distribution. Input Y2 is nearest loop skewing but very near two prototypes also
representing loop distribution. Therefore, loop distribution is the recommended
transformation. Application of this transformation gives the following loops:

-975-

FEUP - Faculdade de Engenharia da Universidade do Porto

DO I = 4,200
SI: A(I) =

CONTINUE
B(I) + C(I)

DO I = 4,200
S2: B(I+2)

CONTINUE
A(I-l) + A(I-3) + C(I-l)

Both these loops may now be executed in parallel; hence there is no requirement for
further transformation.

This example demonstrates an obvious example of when to stop applying
transformations. In other cases, determining when to stop iteratively applying the
process is not so straightforward. The following stopping criteria are used in order of
preference, namely:

• all the dependencies are removed,
• the user decides to apply no further transformations,
• applying the recommended transformation does not reduce the number of

dependencies - in this case the user may decide to proceed with the code after
transformation or roll back to a previous state, and

• the distance on the map between inputs and labelled prototypes is large - typically
for any distance greater than 3 the network cannot confidently make a
recommendation.

The transformation framework presented here has been successful in recommending
appropriate transformations for over 90% of the codes on which it has been tested.

5 Conclusions

A hitherto untried neural network based technique offering strategic guidance on the
selection of appropriate transformation sequences has been developed and
implemented. The transform selector developed has been tested and has produced
excellent results. Research is continuing into the possibility and desirability of
extending the existing tool. Extensions may include using more than the five
transformations originally chosen or labelling more prototypes by using more
labelling codes.

The next stage of the work is to integrate the neural-based transform selector and
the existing expert system to form a hybrid transformation framework within the
KATT environment. As a first stage in this integration a comparative study has been
undertaken to compare the advice given by both systems. An essential part of the
integration will involve extending the expert system with the new knowledge gained
as a result of analysing the Kohonen network at the heart of the new transformation
framework.

-976-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

References

1 C. Ryan: Automatic Re-engineering of Software Using Genetic Programming. Kluwer
Academic Publishers, 1999.

2 H. Heiss and M. Dormanns: Partitioning and mapping of Parallel Programs by Self-
Organisation. Concurrency: Practice and Experience, Vol. 8(9), 1996, pp.685-706.

3 B. McCollum: The Application of AI Methodologies to Code Partitioning and Distribution.
Internal Report, School of Computer Science, The Queen's University of Belfast, N. Ireland,
1999.

4 V. Pumell, P. H. Corr and P. Milligan: A Novel Approach to Loop Characterization. IEEE
Computer Society Press, 1997, pp.272-277, ISBN 0-8186-8215-9.

5 P. Milligan, P. P. Sage, P. J. P. McMullan and P. H. Corr: A Knowledge Based Approach to
Parallel Software Engineering. In: Software Engineering for Parallel and Distributed
Systems. Chapman and Hall, 1996, pp.297-302, ISBN 0-412-75640-0.

6 P. J. P. McMullan, P. Milligan, P. P. Sage and P. H. Corr: A Knowledge Based Approach to
the Parallelisation, Generation and Evaluation of Code for Execution on Parallel
Architectures. IEEE Computer Society Press, 1997, pp.58-63, ISBN 0-8186-7703-1.

7 B. McCollum, V. Purnell, P. H. Corr and P. Milligan: The Improvement of a Software
Design Methodology by Encapsulating Knowledge from Code. IEEE Computer Society
Press, 1998,pp.913-917, ISSN 1089-6503:

8 B. McCollum, P. Milligan and P. H. Corr: The Structure and Exploitation of Available
Knowledge for Enhanced Data Distribution in a Parallel Environment. In: N. E. Mastorakis
(ed): Software and Hardware Engineering for the 21st Century. World Scientific and
Engineering Society Press, 1999, pp. 139-145, ISBN 960-8052-06-8.

9 F. McMahon: The Livermore FORTRAN Kernals: A Computer Test of Numerical
Performance Range. TR UCRL-55745, 1986.

10 J. Dongarra: A Test Suite for Parallelising Compilers: Description and Example Results.
Parallel Computing, Vol. 17, 1991, pp.1247-1255.

11 U. Banerjee: Loop Transformations for Restructuring Compilers. Macmillan College
Publishing Company, 1992.

12 S. Zhiyu: An Empirical Study of Fortran Programs for Parallelizing Compilers. Technical
report 983, Center for Supercomputing Research and Development.

-977-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Multiple Device Implementation of WMPI1

Hernäni Pedroso and Joäo Gabriel Silva

Dependable Systems Group/CISUC
Dept. Engenharia Informätica - Univ. Coimbra

Portugal
{hernani,jgabriel}@dei.uc.pt

Abstract. WMPI is an implementation of the Message Passing Interface (MPI)
standard for Win32 platforms. It was the first implementation and is one of the
most used worldwide for this operating system's family. In this paper, we
describe a new version of WMPI (1.5), which can use several communication
devices simultaneously in the same computation. This new version of WMPI
can also use more than one network interface card on each machine to
communicate with the others. The new library is also thread safe, which
enables to better use the processor by using more than one thread per process.
The possibility of passing different arguments to each process was also
introduced. The communication devices are independent from the core library
and can be developed by anyone; this will enable the product vendors to easily
make a WMPI version running on their communication medium or protocol.

1 Introduction

The computational capabilities of Personal Computers (PCs) had a tremendous
growth in the last few years (and they seem to keep this pace for some time). The
cost/performance ratio of this type of machines is becoming very appealing when
compared with traditional workstations or MPPs. Following the increase of
capabilities in computation, the interconnection between processors is also getting
better. PC boxes with 2 or 4 processors are now common and the number of processes
tends to increase up to 32 in the near future. This represents a high bandwidth with
low latency communication between processing elements, since they communicate
through shared memory. For larger clusters, new network technologies are emerging,
which present a much better performance than in the past years. All these factors are
leading the PC clusters to a very widely used platform for cost effective high
performance computing.

WMPI (Windows Message Passing Interface) [9,12] was the first full
implementation of the MPI standard for Windows operating systems. It was originally
based on MPICH [6] and ever since has received several optimizations to improve its

This work was partially supported by the Portuguese Ministry of Science and Technology
through the R&D Unit 326/94 (CISUC) and the project PRAXIS XXI 2/2.1/TIT/l625/95
named ParQuantum.

-979-

FEUP - Faculdade de Engenharia da Universidade do Porto

performance. Results presented in [1] show that WMPI is the fastest implementation
freely available for Win32 platforms and competes head to head with commercial
products. The work presented here is one more step to improve the usability of the
library and is a result of several requests from users worldwide.

2 Motivation

One of the drawbacks of constructing a PC cluster for high performance computing
was the lack of interconnection networks that could present high bandwidth and low
latency between nodes. Most of the PC clusters were using TCP over Ethernet and
Fast Ethernet networks, which are not optimized for message exchange performance
but to reliability and cost. As the computational power of the PCs grew the network
became the bottleneck of the cluster. Aware of this fact, the hardware vendors have
started to create new technologies that improve the message passing performance
between the computer nodes. VIA [11] is the most recent effort, which is presenting a
wide acceptance, although Myrinet [2], Gigabit Ethernet and SCI [7,8] are also
available. The MPI library must be able to follow these improvements of the
underlying systems. It is thus necessary to create specific devices for each technology
in order to use the maximum performance that it can offer.

Some clusters may have a heterogeneous communication system. A cluster may
have a small set of computers that are interconnected with a high performance
network, but more expensive. This situation may normally occur with the growing of
the number of machines along with time and the acquisition of new technology.
Sometimes also happens that some machines are added momentarily to boost a
computation by increasing the number of processors. These new machines generally
do not have the same communication medium has the existing cluster.

To improve the communication speed, some PCs have more than one network
interface card (NIC). Each of these cards has a different network address. The
previous version of WMPI could not use more than one address per machine. This
new version allows the user to choose which NIC (or network address) should be used
to communicate with each other computer.

3 Implementation Difficulties

As is extensively presented in [9], WMPI has the same layered implementation as
MPICH. The upper layer implements all the MPI functions and uses an abstract
device interface, the ADI [4], to access to more hardware dependent communication
subsystems. Depending on the environment the latter can be a native subsystem or
another message passing system. The WMPI implementation uses the ADI channel
interface implementation [5] over p4 [3], a third generation parallel programming
library.

-980-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Although the structure inherited from MPICH is excellent for portability and
performance, its support for simultaneous multiple device computation is almost
absent. The code present in the MPICH ADI2 implementation to work with
simultaneous devices is not used in the current MPICH version. Moreover, it seems
that the code is not complete. From the analysis of the existing code, it was verified
that MPICH uses a very restricted structure where the user cannot really adapt the
computation to its cluster. Also the ADI channel layer does a lot of polling over the
all devices involved in the computation. Although this polling might improve the
performance of the computation, with the increase number of devices it can produce
the opposite result.

The ADI delegates all the responsibility of process management on the devices.
Within the former version of WMPI (version 1.3), the p4 library is responsible for
creating the processes, manage them and their communications and to kill all of them
at the end of the computation. This makes the devices much more complex and
obligates them to do work beyond the simple message exchange. Moreover, the fact
that the lowest layers manage all the processes means that the coexistence of more
than one independent device in the same computation is very difficult due to the need
of co-operation and awareness between the devices.

4 Multiple Device Implementation

The new WMPI implementation (version 1.5) has a lot of differences when compared
with the previous one. The old architecture was too restrictive and not flexible, so we
had to create a new one. The process management work is now done, not in the
devices but in an upper layer. This helps to reduce the complexity of the devices and
permits a considerable independence between the devices and the WMPI core.
However, the act of creating processes is device dependent because when creating a
remote process is necessary to use some kind of communication medium to access to
the remote machine. Hence the devices are responsible for creating the processes but,
in opposition to the previous version, the devices are just a medium to create the
processes, an upper layer conducts all the management.

Devices are now independent DLLs that are loaded at the startup of each process
according to the cluster configuration. This approach introduces some problems for
users since they have to manage more DLLs. However, this small drawback cannot
supersede the incontestable advantages:
• New devices can be used without having to get a new version of WMPI. In fact,

this reduces the DLLs management problem, because only one WMPI DLL is used
for every device.

• The user can now test several device implementations (even for the same
communication medium) to find which one has the best performance on her/his
cluster/application.

• The development of new devices is totally independent from the WMPI core code.
Having separated DLLs also helps the debugging of the new devices.

-981

FEUP - Faculdade de Engenharia da Universidade do Porto

• Devices can be developed by the communication medium vendors. This will allow
WMPI to be available for those communication mediums faster and probably
better (since they are developed with total knowledge of the underlying medium).

• When a new version of WMPI is released, the users just have to update the WMPI
DLL and can keep using their communication devices.

Since there are several devices through which the machines of the cluster can
communicate, the user is responsible for defining how they communicate during the
WMPI computation. The user has to create a cluster configuration file. Figure 2
presents an example of such a file. Each machine is identified by its Windows
machine identification. For each machine, the user has to indicate which devices the
processes running on,.that machine can communicate with and the identification of the
machine using that device. This allows the user to specify more than one device, of
the same type, in the same machine (with different addresses). It also solves the
problem of identification of the machines in the Process Group file (PG) when a
machine has more than one device.

With this configuration file, the user can also define communication paths and
cluster communication structures. For example, the configuration of the Figure 2
represents the cluster of Figure 1, where, machinel and machine2 have a NIC to
communicate with each other and a NIC to communicate with the other machines.
This way, machinel and machine2 have a direct path between them; this avoids
the collisions with the traffic to the machine3. This type of configuration improves the
communication performance between the two nodes; this is becoming more common
as the price of the network cards lowers.

Machinel NIC NI(, Machine!

NIC NIC

T h Switch - T

X
NIC

M achiiu :3

Fig. 1. Cluster defined by the
configuration file.

/Machines
machinel
tcp 193.145.134.21
other 193.145.134.22
shmem machinel
machine2
tcp 193.145.134.11
tcp:l 193.145.134.12
shmem machine2
machine3
tcp 193.145.134.31
shmem machine3
/Connections
default internal shmem
default external tcp
machinel tcp:l machine2 tcp:l

Fig. 2. Example of a Cluster Configuration File

The definition of the devices used to communicate between the several machines is
placed after the definition of all the machines on the cluster. The user has the
possibility of specifying the default device for inter-process communication whether
they run within the same machine (internal) or when in different ones (external). The
user can also specify special connections, which do not follow the default. In the

-982-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

above example, machine 1 uses the second IP address to communicate with the
machine2, which also uses its second IP address.

The PG file has some changes to. In the previous version the machine where the
first process (the Big Master) was started had to be specified as Local. Also the other
machines had to be specified using their IP address. The new PG file (Figure 3) uses
the Windows machine name to specify which machine is used to run the process.

Machinel 1 c:\wmpi\test.exe 1 1
Machinel 2 c:\wmpi\test2.exe 1 2
Machine2 1 c:\wmpi\test.exe 2 1
Machine3 2 c:\wmpi\test2.exe 3 1

Fig. 3. Example of a Process Group file.

In the former version of WMPI even the arguments that were passed to the Big
Master were not passed along to the Worker processes. The user had to pass the
information to the Workers through messages. This new version avoids all these
problems by allowing the user to specify different arguments for each processes of the
computation in the PG file. The user can also give different arguments to different
processes on the same machine (whether they use the same executable or not).

Devices for Shared Memory and TCP/IP communication are being implemented.
The results gathered this far show that the new architecture fulfills the requirements.
Performance results of these new devices will be presented in the final paper version.

5 Data Visualization and GUI Applications

Libraries for parallel computation are a valuable aid to execute computing demanding
algorithms. They allow the user to get its results much faster. However if the results
are not presented in an intuitive way, it may be very difficult to interpret them. Most
of the time it is much easier to understand the information in a graphical
representation than in a matrix with several thousands of values.

It is normally considered that the presentation of the results is out of the scope of
the parallel libraries and few might have any API function to produce some graphical
outcome of the results. The users have to rely on the functionality provided by the
operating system they are working on or to use some external libraries.

The users of the Windows operating system expect to have graphical user
interfaces (GUI) to control their applications and to visualize the results in a graphical
mode. The WMPI does contain any function to produce graphical results, but can be
easily used in conjunction with the Microsoft Foundation Classes (MFC) [13]. This
way is possible to produce GUI applications that calculate the results in parallel and
present them in a graphical manner.

The WMPI does not require starting at the beginning of the process and does not
use the contents of the arge and argv parameters (in fact they can be passed as NULL

-983-

FEUP - Faculdade de Engenharia da Universidade do Porto

into the MPi_mit call). Hence it can be started by any GUI application whenever its
necessary to make the computation intensive part.

Figure 4 presents an application that calculates the Mandelbrot set [14] and
displays it. The WMPI is started when the application initializes and remains running
until the user ends the application. The WMPI could be started every time that a
calculation is requested, however the penalty time for starting the environment is
quite high for such small applications.

^';::^:v'-;;7S:;^.i ./ttfesraiaisREi

mmmmmmm

m. nA ik^'

End 1 Zoom In (^ Zoom Out |

Fig. 4. The WMPI Mandelbrot example.

This application is constituted by tow separated executables. One interacts with the
user, presents the results and distributes the data to be computed. The second
executable is a simple C program without any graphical interface and is used just to
compute the data. In fact it is a Master/Worker application. The Master spreads the
data around and gathers the results from the Workers.

In this example, the user can select a region of the window to zoom in and see the
Mandelbrot set with more detail. The Master (GUI executable) splits the computation
in small jobs and scatter them by the Workers. After receiving the results, it presents
them to the user. The WMPI application is completely controlled by a graphical user
interface.

-984-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

6 Multiple Threads in a WMPI Process

One of the most expected features of the new WMPI version was thread safety. While
creating the new structure it was taken as a demand. The usage of multiple devices
simultaneously implied that the library had to be partially thread safe, since each
device can have one or more threads that access concurrently to the WMPI internal
structures. A deep study was made to identify every structure that could be corrupted
by simultaneous accesses and a protection mechanism was introduced. The
synchronization had to be as light as possible to reduce the impact in the latency of
the library.

The new WMPI library offers the highest level of thread safeness
(MPI_THREAD_MULTIPLE) described in the MPI 2.0 standard (Chapter 8 - Section 7).
This thread safety level allows the users to make simultaneous calls to MPI functions.

By using multiple threads in the same process, the user can better exploit the CPU
usage by reducing the waiting times. For example the Mandelbrot example uses two
threads in the GUI application. One acts as a Worker and the other as a Master. This
way is possible to receive a result from any Worker and send it another job without
having to wait for the Master to calculate its job until the end.

Master/Worker applications can easily take advantage of multiple threads, however
many applications can be programmed to better use the CPU capacity by using more
than one thread per process.

7 Performance Results

Although the performance of the WMPI library was among the best existing libraries
for Windows NT systems [1], during the evolution of the library new strategies were
introduced to reduce the communication latency. The new architecture reduces the
synchronization and uses functionality specific from the operating system. Since the
former version of WMPI was based in a portable implementation, it used generic
functionality. This version does not intend to be portable, hence specific operating
system functions were welcome whenever they improved the latency.

Table 1 shows a time comparison of the one-way latency between two processes
running on a dual PHI 550Mhz through shared memory communication. It can be
seen that the latency was reduced from almost 29 microseconds to approximately 17
microseconds in a zero length message. The Figure 5 shows the percentage of
improvement that the new version has when compared with the former one. Up to 8
Kbytes, the new version is 40 to 50% better (half of the latency). The improvement is
reduced for larger messages because the time spent in memory copies is much higher
than the latency time and the later is diluted in the outcome.

-985-

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 1. One-way latency for the shared memory device in a dual PHI 550Mhz
(time in microseconds).

is^^ifcsll ., ««wC:
T

0 28.95 16.87
1 30.75 17.8
2 30.62 17.48
4 30.77 17.71
8 31.53 17.28
16 31.25 17.84
32 32.08 17.71
64 33.6 18.82
128 35.35 19.11
256 38.12 20.78
512 40.4 22.49
IK 51.65 25.98
2K 64.33 32.17
4K 97.87 48.13
8K 165.57 86.77
16K 165.2 141.24
32K 285.55 258.76
G5K 532.72 503.53
128K 1123.19 1070.61

0 2 8 32 128 512 2K 8K 32K 128K

Message size (bytes)

Fig. 5. Improvement in latency between the two WMPI version (1.3 and 1.5)

The next experiment uses the TCP device to communicate between two processes
running on two dual Pentium-Pro machines connected through a Fast Ethernet
network. The Figure 6 shows that WMPI uses practically all the available bandwidth
for larger messages. For smaller messages, the result is conditioned by the latency that
the library introduces in the communication. But when the message size starts to
increase and the latency introduced gets a much smaller weight in the final result than
the time to send the message through the network, the library is able to use practically
all the bandwidth that the system offers. The improvement starts at 256 bytes and at
8Kbytes already uses 93% of the available bandwidth.

-986-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 6. Bandwidth utilization in a Fast Ethernet network.

Figure 7 presents the speed up obtained using two different applications. The
Mandelbrot set calculation and the PI calculation examples. The two applications
have quite different results using WMPI. This is due to the fact that it is impossible to
make the construction and presentation of the bitmap figure of the Mandelbrot set in
parallel. Since this action is centralized in the GUI application, it reduces the
parallelism of the application and hence the speed up.

Number of Processors

Fig. 7 Speedup obtained using the PI calculation and the Mandelbrot set calculation.

Two measurements were gathered for the Mandelbrot application. One contains the
speed for the calculation of the initial screen (Figure 4), the other were gathered when
processes have to calculate a completely black region. In the second experiment the
results are better because the black region is more computation intensive (the values

-987-

FEVP - Faculdade de Engenharia da Universidade do Porto

are tested until they are considered inside the set) and more time is spent in computing
(which reduces the weight of the presentation in the overall time).

The PI calculation shows that WMPI is able to offer a practically linear speedup
when the application permits.

8 Conclusions

The previous implementation of WMPI forced the user to have a homogeneous
communication system on the cluster. The changes introduced in WMPI allow the
users to adjust the computation to fully use the capabilities of their cluster.

The way that the user configures the parallel execution through the PG file is now
much more complete and versatile. The name of the machines is unambiguous and
arguments can be passed to every process.

The library is now thread safe, which allows the user to fully exploit the CPU
usage per process by reducing the waiting times. The usage of multiple thread also
aids to develop applications where processes running on one machine have different
functionality, in these cases instead of using processes the user can use threads and
reduce the penalty time for context switching.

Since the communication devices are now independent of the WMPI core, it is
possible to implement devices for the new technologies that are emerging without
having to change the core code. This also avoids the release of several versions of
WMPI, one for each communication subsystem.

This new architecture allows the communication medium vendors to implement the
device drivers for their products. The knowledge they have on their product allows
them to build a device with the best performance. We hope that this strategy also
enables the devices to be available to the users right after the release of a new
technology. Since it can be developed by anyone, even by WMPI users.

The new structure of the WMPI core is also driven by the need of make deep
changes for the MPI-2 Dynamic Process Creation. A full MPI-2 implementation
(WMPI 2.0) is under development and will be released in the near future.

References

1. Baker, M: MPI on NT: The Current Status and Performance of the Available Environments.
Proc. of 5* European PVM/MPI User's Group Meeting, pp.63-73 (September 1998).

2. Boden, N., Cohen, D., Felderman, R., Kulawik, A., Seitz, C, Seizovic, J. and Su, W.:
Myrinet: A Gigabit-per-second Local Area Network. IEEE Micro, pp. 29-36 (February
1996).

3. Butler, R. and Lusk, E.: Monitors, messages and clusters: The p4 parallel programming
system. Parallel Computing, 20:547-564 (April 1994).

-988-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

4. Gropp, W. and Lusk, E.: An abstract device definition to support the implementation of a
high-level point-to-point message-passing interface. Preprint MCS-P342-1193, Argonne
National Laboratory (1994).

5. Gropp, W. and Lusk, E.: MPICH working note: Creating a new MPICH device using the
channel interface. Technical Report ANL/MCS-TM-213, Argonne National Laboratory
(1995).

6. Gropp, W., Lusk, E., Doss, N. and Skejellum, A.: A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard. Pre-print MCS-P567-0296
(July 1996).

7. Gustvason, D. and Li, Q.: The Scalable Coherent Interface (SCI). IEEE Communications
Magazine, pp. 52-63 (August 1996).

8. IEEE Std 1596-1992: IEEE Standard for Scalable Coherent Interface (SCI). (August 1993).
9. Marinho, J. and Silva, J.G.: WMPI - Message Passing Interface for Win32 Clusters. Proc. of

5,h European PVM/MPI User's Group Meeting, pp.113-120 (September 1998).
10. Message Passing Interface Forum: MPI: A message-passing interface standard.

International Journal of Supercomputer Applications, 8(3/4): 165-414 (1994).
11. Virtual Interface Architecture Interface Specification: Version 1.0 http://www.viarch.org

(December 1997).
12. WMPI Homepage - http://dsg.dei.uc.pt/wmpi
13. Kruglinski, D., Shepherd, G. and Wingo, S.: Programming Microsoft Visual C++, Fifth

Edition. Microsoft Press, ISBN 1-57231-857-0, 1998
14. Mandelbrot, B.: Fractal Geometry of Nature. W. H. Freeman, ISBN 07-167-11869, 1998

-989-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Optimization with Parallel Computing

Sourav fCundu

Emerging Technologies Research Laboratory (ETRL), Interlogic Japan Inc.
Pure Toranomon Bldg. 2F. 3-16-7 Toranomon, Minato-ku,

Tokyo 105-0001, Japan
souravfSiilogie.net

Abstract - Complexity Engineering deals with harnessing the power of Cellular Automata
(CA) like simple models to solve real life difficult and complex engineering problems, dealing
with systems that have very simple components that collectively exhibit complex behaviors.
Cellular Automata (CA) are examples of dynamical systems which may instead exhibit "self
organizing" behavior with increasing time. CAs are commonly used in modeling modular
systems. An important aspect of modularity in engineering systems is the abstraction it makes
possible. Once the construction of a particular module has been completed, the module can be
treated as a single object, and only its behavior need be considered, wherever the module
appears. One such application of modularity is a described in this paper where a structural
plate is considered as composed of smaller "structural modules" which are considered as cells
in a lattice of sites in a CA and have discrete values updated in discrete time steps according to
local rules. These local rules are generally fixed in a CA, but we consider these rules as
evolvable. To evolve the local rules, we use the Genetic Algorithm (GA) model. Though the
application described here is simple, but it will serve to demonstrate that the GA can discover
CA rules that give rise to emergent computational strategies by self-organization, to exhibit
globally coordinated tasks in optimization by simple local interactions only.

1 Introduction

In conventional engineering, systems are built to achieve very specific
goals by exhibiting specific "global" behavior. Even the behavior of
each of their component "local" parts are strictly designed and have
only specific reasons for their existence. The overall behavior of these
systems must be simple enough so that complete prediction and often
also analysis, is possible. Thus for example motion in conventional
mechanical engineering devices is usually constrained to be periodic.
Of course more complex behavior could be realized or expected from
the basic components of a mechanical engineering device but principles
necessary to make use of such behaviors and theory necessary to

-991

FEUP - Faculdade de Engenharia da Universidade do Porto

analyze such behaviors, is not yet known. On the contrary, nature
provides many examples of systems whose basic components are
simple, but whose overall behavior is extremely complex.
Mathematical models such as Cellular Automata (CA) capture the
essential features of such "bottom-up" complex systems. Complexity
Engineering deals with harnessing the power of CA like simple models
to solve real life difficult engineering problems, dealing with systems
that have very simple components that collectively exhibit complex
behaviors. Generally speaking, discrete dynamical systems that follow
the second law of thermodynamics evolve with time to maximal
entropy and complete disorder. But Cellular Automata are examples of
dynamical systems which may instead exhibit "self organizing"
behavior with increasing time. Even starting from complete disorder,
their irreversible evolution can spontaneously generate ordered
structures. Sometimes even decrease of entropy with time is noticed as
a result of self-organization. This paper introduces the idea of using
genetic (GA based) learning of a Cellular Automata (CA) that takes a
disordered structural layout to an ordered one, satisfying several
conflicting design criteria and finally producing an optimal or
acceptable structure/design. To evolve the Cellular Automata (its rules)
we use a Genetic Algorithm (GA) which is a widely accepted
computational framework for evolution. The GA encodes the CA rules
and evolves them progressively with time to more efficient ones
(culling the less efficient ones in the evolution process). Detail
computer simulation studies have been performed and results are
presented in this paper. Though the application described here is
simple but it will serve to demonstrate that the GAs can "discover" CAs
that give rise to emergent computational strategies and exhibit global
coordination tasks in structural optimization of complex engineering
systems by simple local interactions only.

2 Self Organization

The second law of thermodynamics implies that isolated
microscopically reversible physical systems tend with time to states of

-992-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

maximal entropy and maximal "disorder". However "dissipative"
systems involving microscopic irreversibility may evolve from
"disordered" to more "ordered" states. This phenomenon of evolving
from "disordered" to more "ordered" states can be seen in dynamically
stable systems like Cellular Automata (CA)[1]. An elementary CA is a
single array of "cells" capable of transforming themselves from one
discrete "state" to some other. A certain definite set of interaction rules,
governing how cells change their states in accordance to the value of
the state of the neighboring cells, is given to each cell. With simple
initial configurations, a CA either tend to homogeneous states or
generate self-similar patterns with fractal dimensions = 1.59 or = 1.69.
With random initial configurations, the irreversible character of the
cellular automaton evolution leads to several self-organization
phenomena. Statistical properties of the structure generated are found to
lie in two universality classes, independent of the details of the initial
state or the CA rules. This paper shows how the CA model can be used
for its self-organizing capabilities for design optimization of structural
plates and shells. The design goal is to find a minimum weight
structure. Elements of this structure "adapts" to a minimum weight
design, using the rules of the CA to transform its states (cell thickness).
Rules are then subjected to genetic evolution by using a GA. A
complex system is simulated with the interacting structural sub-
elements being encoded as the cells of the CA. Sequential gathering of
information with the interaction of structural sub-elements
progressively modifies the different elements (variables) of the
structure and the overall system evolves with time. This means that the
rules of the CA (used for interaction between the structural sub-
elements), are progressively modified by the genetic recombination
(crossover and mutation), as these rules are directly encoded in the
genotype string of the GA. Complex adaptive systems theory has nexus
with structural optimization, both large and small scale, because both
exhibit global behavior as a result of local action-reaction patterns, but
this has not so far been exhaustively studied or experimented with.
However, there has been some preliminary research done in the area of
evolution of simple CA models [2].

-993-

FEUP - Faculdade de Engenharia da Universidade do Porto

3 Structural optimization by evolving a cellular automata

An evolutionary CA model has been applied here to structural
optimization by combining the strengths of CA and a Genetic
Algorithm (GA)[3], to find local rules of a CA which can minimize the
weight of a plate structure. The plate is subjected to an external load,
which may be distributed or at a point. The plate is 50mm X 50mm
square with fixed left edge and concentrated load on the right edge.
This plate is divided into 25 unit square elements and a discrete set of
plate thickness is defined for each of these elements. The Cellular
Automata encodes the configuration of this plate, with the state of the
cells in the CA representing the discrete set of plate thickness, changing
from one thickness to any other as a result of interaction with its
neighboring elements as defined by the exhaustive set of CA rules.
These rules are then subjected to evolutionary improvement by
undergoing the Genetic Algorithm iterative cycle. The CA lattice starts
out with an Initial Configuration (IC) of cell states (0s and Is) and this
configuration changes in discrete time steps in which all cells are
updated simultaneously according to the CA rules. A table of these
rules is encoded in the GA chromosome string and they evolve over
time to give a rich set of rules that can take any starting random IC of a
CA to a desired final configuration.

3.1 Cellular Automata

The structure of a system need not be complicated for its behavior to be
highly complex, corresponding to a complicated computation.
Computational irreducibility may thus be found even among systems
with simple construction. Cellular Automata (CA) provide such an
example [1]. A CA consists of a lattice of cells, each with k possible
values, and each updated in time steps by a deterministic rule,
depending on the neighborhood of R sites. Cellular automata are thus
mathematical idealizations of physical systems in which space and time
are discrete, and physical quantities take on a finite set of discrete
values. A cellular automaton typically consists of a regular uniform

-994-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

array of cells. The state of the cellular automaton is completely
specified by the values of the variables at each of these cells. The
cellular automaton evolves in discrete time steps, with the value of the
variable at one cell being affected by the values of the variables at sites
in its "neighborhood" on the previous time step. The neighborhood of a
cell is typically taken to be the cell itself and all immediately adjacent
cells. The variables at each cell are updated simultaneously
("synchronously"), based on the values of the variables in their
neighborhood at the preceding time step, and according to a definite set
of local rules [1].

A one-dimensional cellular automaton is a lattice of N two-state
machines ("cells"), each of which changes its state as a function only of
the current states in a local neighborhood. The lattice starts out with an
initial configuration (IC) of cell states (Os and Is) and this configuration
changes in discrete time steps in which all cells are updated
simultaneously according to the CA "rule" . Here the term "state" is
used to refer to the value of a single cell. The term "configuration" is
used to refer to the collection of local states over the entire lattice. A
CA's rule can be expressed as a lookup table ("rule table") that lists, for
each local neighborhood, the state which is taken on by the
neighborhood's central cell at the next time step. For a binary-state CA,
these update states are referred to as the "output bits" of the rule table.
In a one-dimensional CA, a neighborhood consists of a cell and its r
("radius") neighbors on either side. The CA implemented in our model
does not have periodic boundary conditions where the lattice is viewed
as being circular, instead special rules are described for the edges of the
lattice (boundaries).

Cellular automata have been studied extensively as mathematical
objects, as models of natural systems, and as architectures for fast,
reliable parallel computation. However, the difficulty of understanding
the emergent behavior of CAs or of designing CAs to have desired
behavior has up to now severely limited their use in science and
engineering and for general computation and ofcourse for optimization.
The work described here is on using genetic algorithms to obtain
certain optimal CAs to perform computations for optimization tasks.
Typically, a CA performing a computation means that the input to the
computation is encoded as the Initial Configuration (IC), the output is
decoded from the configuration reached at some later time-step, and the

-995-

FEUP - Faculdade de Engenharia da Universidade do Porto

intermediate steps that transform the input to the output are taken as the
steps in the computation. The computation emerges from the CA rule
being obeyed by each cell.

To produce CAs that can perform sophisticated parallel
computations, the Genetic Algorithm (GA) must search for CAs in
which the actions of the cells, taken together, is coordinated so as to
produce the desired behavior. This coordination must, of course,
happen in the absence of any central processor or central memory
directing the coordination. Some early work on evolving CAs with GAs
was done by Packard [4]. Koza[5] also applied genetic programming to
evolve CAs for simple random-number generation. In this work, we
have used a form of the GA to evolve one-dimensional, binary-state r =
2 CAs to perform a structural optimization task.

3.2 Genetic Algorithms

Genetic Algorithms[3] are distinguished by their parallel investigation
of several areas of a search space simultaneously by manipulating a
population, members of which are coded problem solutions. The task
environment for these applications, is modeled as an exclusive
evaluation function which, in most cases is called a fitness function that
maps an individual of the population into a real scalar. The
motivational idea behind GA is natural selection. Genetic operators like
selection, crossover and mutation are implemented to emulate the
process of natural evolution. A population of "organisms" (usually
represented as bit strings) is modified by the probabilistic application of
the genetic operators from one generation to the next. GAs also has a
potential for multi-dimensional optimization as they work with
population of solutions rather than a single solution. A detailed
explanation of the theory and working of the GA can be found in
numerous existing literatures on the subject, for example in Goldberg
[3]-

-996-

VECPAR '2000 - 4th international Meeting on Vector and Parallel Pre

4 GA Encoding Of The CA Rules

The principal difficulty in this model is to find a suitable encoding
technique for each GA genotype string (chromosome or bit string)
which has to represent a candidate rule set (or a rule table). We propose
a new encoding technique here. A CA's rule table IT can be expressed
as a rule-table that lists, for each local neighborhood, the state which is
taken on by the neighborhood's central cell at the next time step. This is
illustrated in Figure 1. For a binary-state CA, these update states are
referred to as the "output-bits" of the rule table as shown in Figure 2.
For each of, all the possible permutations of neighborhood values (r =
1), we first define the output bit.

Rule table rt:
neishfuirliond:

output bit: 0 0

(encoded as GA Genotype)

001 010 Oil 100 101 NO III

10 111

Lattice:

X ciehbnrhnod - -

t = o i [o

r= 1

1 . 0 f 0 I ! 1 I 1 0

t = 1 0 i I ! 0 i 0 0 l 1 j 1 . 1 j 1 0 i ■

Fig 1: Rule Table (FT) representation
technique in one-dimensional, binary state,
nearest neighbor (r =1) cellular automaton
with ^=11. __

OUTPUT| I l-lv
OUTPUTI 2 |=»|\Cx

OUTPUTI 3 | * l! \\
I : !

» . «. 1L

» ' 1 0 1 0 1 l¥¥I¥¥TfO 1110 0 :
» ;..;... ■■- - -<--»-•'

f Chromosome
OUTPUT|N-2|i'l
OUTPUT|N-lj = i - ""' y/
OUTPUTI N |=J. .__ ___,_--"'

CA Outputs

Fig 2: Output bit of each rules is encoded as

-997-

FEUP - Faculdade de Engenharia da Universidade do Porto

the "genes" in the GA genotype.

Each GA chromosome (bit string) consists of the output bit and the
whole set of local rules (rule table) is encoded as the chromosome.
Thus each population member (chromosome) of the GA represents a
candidate rule table in our model. We consider unit length
neighborhood of cells in four cardinal directions, which affect the state
of each cell, as shown in Figure 3. Thus we have four cells that affect
each cell plus the cell itself. These five cells have 2 state each making it
32 states in all (23=32), consequently making it 32 basic rules in all. We
then have special rules as: Case 1 - Referring to Figure 4 we have one
generalized rule for corner elements (1,2,3,4) and one generalized rule
for each group of edge elements (5,6,7,8) and 32 rules for elements
marked 9. This makes 34 rules in all that are evolved by the GA. Case
2. - Referring to Figure 4 we have four special rules for each of the
corner elements (1,2,3,4) and four special rules for each group of the
edge elements (5,6,7,8) and 32 rules for elements marked 9. This
makes 40 rules in all that are evolved by the GA.

5 Numerical application

The CA evolves through a series of transformation of its states which
change in discrete time, given the local rule set for each of Case 1, and
Case 2 described above. We limit the CA transformation to 25 and then
analyze the plate structure, (with variable material distribution through
out its 25 elements) for stresses, by a Finite Element Analysis (FEA)
program. The Mises stresses of each elements are calculated by FEA by
employing decomposition of each square element into the upper and
lower triangular element and determining the constraint violation
conditions of these triangular element. If there are any stresses which
violate the given stress constraint and allowances, we add an
appropriate penalty on its weight, which proportionately reduces the
fitness returned to the GA for that particular table of local rules (GA
chromosome). Each set of local rule is subjected to 100 different ICs of

-998-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

the CA and we use the average fitness for all these 100 ICs as the
fitness that is returned to the GA to evaluate the goodness or utility of
each set of local rules that are generated by each GA iteration. Thus, we
progressively modify the set of local rules which helps us to achieve
the minimum weight design in the smallest number of CA state
transformation cycles. The overall system architecture is illustrated in
Figure 5.

Fig 3: Neighborhood of each
cell in four directions that are
considered while encoding the
CA computations in the GA
genotype.

Fig 4: Special CA rules of
edges and for corners of the
structural plate.

Chromosomes
/ i

■c

Cellular
Automaton

Thickess of
Plate ■A

I Fitness of

/ \

'
Thickn
Info.

ss
FEMl

\ ° I Weight of
Plate

\ I
Bit String

Stress Info. v7
EVALUA TION FUN CTION

Fig 5: The system architecture for the evolving CA rules for
structural optimization.

-999-

FEUP - Faculdade de Engenharia da Universidade do Porto

Table A. The 32 CA rules that produced the structural plate design
shown in Figure 10.

001)00 00001 00010 00011 00100 00101 00110 00111 01000 01001

0 I I 1 0 1 I 1 1 0

01010 01011 01100 01101 OHIO 01111 10000 10001 10010 1001 ■

0 01010 0000

10100 10101 Mil 111 10111 11000 11001 11010 11011 11100 11101

0 0 0 10 10 0 11

11110 Hill

5.1 Optimization Results

Figures 6 to 10 show results of preliminary experimentation and
computer simulation. These results also confirm that a self-organizing
approach can be used under the limitation of computational abilities, to
find (or learn) the best set of local rules for optimization of plate like
structures with various distributed plate thicknesses. We believe that
the figures of optimization results will be comprehended better by the
reader, rather than the final rules and so we present the figures of final
results obtained. Nevertheless as an example, some final evolved rules
are shown in Table A. The 32 CA local rules shown in Table A, along
with the 8 edge rules (Case 2 : ref. Section 3.1) produce the final design
presented in Figure 10. The top lines of Table A shows the
neighborhood of the cells and the bottom lines, the output bit (ref.
Figure 1).

Conclusions

The discovery of rules that produce global optimization of structural
plates show instances of GA's producing sophisticated emergent
computation in decentralized, distributed systems such as CAs. The rule

-1000-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

discoveries made by a GA are encouraging for the prospect of using
GAs to automatically evolve computation for more complex tasks and
in more complex optimization systems. Moreover, evolving CAs with
GAs also gives us a tractable framework in which to study the
mechanisms by which an evolutionary process might create complex
coordinated behavior in natural decentralized distributed systems.

Fig ure6.

Number of rules - 40

GA Population = 500

Crossover rate = 35%

M utation rate = 1%

Generation = 90

Number of rules = 40

GA Population = 300

C ro s s o v e r ra t e = 3 0 %

M utation rate = 3%

Generation = 95

-1001

FEUP - Faculdade de Engenhaha da Universidade do Porto

9.8 kN

Figure8.

Numb er of rules = 34

GA Population = 300

Crossover rate = 30%

M utation rate = 1%

Generation = 23

n:
linjffinttt

m m

F ig u re 9.

Number of rules = 40
GA Population = 300

Crossover rate = 30%
M utation rate = 3%
Generation = 30

t = 1.0mm

t= 10.0mm

F ig u re 10.

Number of rules = 40
GA Population = 150

Crossover rate = 40%

M utation rate = 1%
Generation = 66

-1002-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

References

1. Wolfram, S., (1994). Cellular Automata and Complexity, Collected
Papers. Addison-Wesley, Reading, Massachusetts.

2. Mitchell, M.; Crutchfield, J. P. and Das, R, (1996). "Evolving
cellular automata with genetic algorithms: A review of recent
works.", Proceedings of the First International Conference on
Evolutionary Computation and Its Applications (EvCA'96).

3. Goldberg, D. E., (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley, Reading,
Massachusetts.

4. Packard, N. H., (1988). "Adaptation toward the edge of chaos". In J.
A. S. Kelso, A. J. Mandell, M. F. Shlesinger, eds., Dynamic
Patterns in Complex Systems, 293-301. Singapore: World
Scientific.

5. Koza, J. R., (1992). Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA: MIT
Press.

1003-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Power System Reliability by Sequential Monte
Carlo Simulation on Multicomputer Platforms

Carmen L.T. Borges Djalma M. Falcäo

Federal University of Rio de Janeiro
P.O. Box 68504, 21945-970, Rio de Janeiro - RJ

Brazil
carmenQdee.ufrj.br, falcaoOcoep.ufrj.br

Abstract. A powerful technique used for power system composite re-
liability evaluation is Monte Carlo Simulation (MCS). There are two
approaches to MCS in this context: non-sequential MCS, in which the
system states are randomly sampled, and sequential MCS, in which the
chronological behaviour of the system is simulated by sampling sequences
of system states for several time periods. The sequential MCS approach
can provide information that the non-sequential can not, but requires
higher computational effort and is more sequentially constrained. This
paper presents a parallel methodology for composite reliability evaluation
using sequential MCS on three different computer platforms: a scalable
distributed memory parallel computer IBM RS/6000 SP with 10 proces-
sors, a network of workstations (NOW) composed of 8 IBM RS/6000 43P
workstations and a cluster of PCs composed of 8 Pentium III 500MHz
personal microcomputers. The results obtained in tests with actual power
system models show considerable reduction of the simulation time, with
high speedup and good efficiency.

1 Introduction

The primary function of electric power systems is to satisfy the consumers' de-
mand in the most economic way and with an acceptable degree of continuity,
quality and security. The ideal situation would be that the energy supply was
uninterrupted. However, the occurrence of failures of some components of the
system can produce disturbances capable of leading to the interruption of the
electric energy supply. In order to reduce the probability, frequency and duration
of these failure events and their effects, it is necessary to accomplish financial
investments in order to increase the reliability of the system. It is evident that
the economic and the reliability requirements can conflict and make it difficult
to take the right decisions.

The new competitive environment of the electric energy market makes the
evaluation of energy supply reliability of fundamental importance when closing
contracts between utilities companies and great consumers. In this context, the
definition of the costs associated with the supply interruption deserves special
attention, since engineers must now evaluate how much it is interesting to invest

1005-

FEUP - Faculdade de Engenhaha da Universidade do Porto

in the system reliability, as a function of the cost of the investment itself and
the cost of the interruption for the consumer and for the energy vendors. This
new environment also requests the reliability evaluation of larger parts of the
interconnected system and it can demand, in some cases, nation-wide systems
modelling. For this purpose, it becomes a necessity to develop computational
tools capable of modelling and analysing power systems of very high dimensions.

One of the most important methods used for reliability evaluation of power
systems composed of generation and transmission sub-systems is Monte Carlo
Simulation (MCS). MCS allows accurate modelling of the power system com-
ponents and operating conditions, provides the probability distributions of vari-
ables of interest, and is able to handle complex phenomena and a great number
of severe events [1,2].

There are two different approaches for Monte Carlo simulation when used
for composite system reliability evaluation: Non-Sequential MCS and Sequential
MCS. In Non-Sequential MCS, the state sampling approach is used, in which
case the state space is randomly sampled without concerning the system oper-
ation process chronology. This implies in disregarding the transitions between
system states. In Sequential MCS, the chronological representation is adopted,
in which case the system states are sequentially sampled for several periods, usu-
ally years, simulating a realisation of the stochastic process of system operation.
The expected values of the main reliability indices can be calculated by both
approaches. However, estimates of specific energy supply interruption duration
and the probability distribution of duration related indices can only be obtained
by sequential MCS [3]. In applications related to production cost evaluation,
only the sequential approach can be used. On the other hand, sequential MCS
demands higher computational effort than non-sequential MCS. Depending on
the system size and modelling level, the sequential MCS computer requirements
in conventional computer platforms may become unacceptable [4].

In both MCS approaches, the reliability evaluation demands the adequacy
analysis of a very large amount of system operating states, with different topo-
logical configurations and load levels. Each one of these analyses simulates the
operation of the system at that particular sampled state, in order to determine if
the energy demand can be attended without operating restrictions and security
violations. The main difference between the two approaches is concerned with the
way the system states are sampled, which is randomly done in the non-sequential
MCS and is sequentially sampled in time in sequential MCS. Each new sampled
state in sequential MCS is dependent of the configuration and duration of the
previously sampled one.

This paper describes results obtained by a parallel methodology for com-
posite reliability evaluation using sequential MCS on three different multicom-
puter platforms: a scalable distributed memory parallel computer IBM RS/6000
SP with 10 processors, a network of workstations (NOW) composed of 8 IBM
RS/6000 43P workstations and a cluster of PCs composed of 8 Pentium III
500MHz personal microcomputers. In a previous paper [5], a methodology for
parallelisation of composite reliability evaluation using non-sequential MCS was

- 1006-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

presented. Tests performed on three electric systems showed results of almost
linear speedup and very good efficiency obtained on a 4 nodes IBM RS/6000 SP
parallel computer. As a continuation of that work, this paper now deals with
sequential MCS on three different multicomputer platforms. The chronological
dependency between consecutive sampled states that exists in the sequential
MCS approach introduces much more complexity in developing a parallel algo-
rithm to solve the problem than there was in non-sequential MCS. Although
MCS techniques are used to sample the system state configuration, each of them
is now coupled in time with the next one, and this introduces significant sequen-
tial constraints in the parallelisation process.

The methodology presented in this paper is based on coarse grain asyn-
chronous parallelism, where the adequacy analysis of the system operating states
within each simulated year is performed in parallel on different processors and
the convergence is checked on one processor at the end of each simulated year.
Some actual power system models are used for evaluating the performance of
the methodology and the scalability correlation with the network architecture
and bandwidth.

2 Sequential Monte Carlo Simulation

The power system reliability evaluation consists of the calculation of several in-
dices, which are indicators of the system adequacy to the energy demand, taking
into consideration the possibility of occurrence of failures of the components. In
particular, the composite reliability evaluation considers the possibility of failures
at both the generation and the transmission sub-systems. A powerful technique
used for power system composite reliability evaluation is MCS [1]. One possible
approach is the chronological representation of the system operation stochastic
process, in which case the system states are sequentially sampled in time. One
implementation of the chronological representation is the use of sequential MCS.
In sequential MCS, the system operation is simulated by sampling sequences of
operating states based on the probability distribution of the components states
duration. These sequences are sampled for several periods, usually years, and are
called yearly synthetic sequences. The duration of the states and the transitions
between consecutive system states are represented in these synthetic sequences.

The reliability indices calculation using sequential MCS may be represented
by the evaluation of the following expression:

E(F) = JTEF(V>) (1)
ft=i

^here

N: number of simulated years
Dk'. yearly synthetic sequence composed of the sampled system states within

vear k

1007-

FEUP - Faculdade de Engenharia da Universidade do Porto

F: adequacy evaluation function to calculate yearly reliability indices over the
sequence yk

E(F): estimate of the expected value of the adequacy evaluation function

The reliability indices correspond to estimates of the expected value of dif-
ferent adequacy evaluation functions F for a sample composed of N simulated
years. For calculation of the values of F associated with the various indices,
it is necessary to simulate the operating condition of all system states within
a year. Each simulation requires the solution of a static contingency analysis
problem and, in some cases, the application of a remedial actions scheme to
determine the generation re-scheduling and the minimum load shedding. Most
of the computational effort demanded by the algorithm is concentrated is this
step.

The convergence of the evaluation process is controlled by the accuracy of
MCS estimation by the coefficient of variation a, which is a measure of the
uncertainty around the estimates, and is defined as:

E(F) {l]

where V(E(F)) is the variance of the estimator.
A conceptual algorithm for composite reliability evaluation using sequential

MCS is described next:

1. Generate a yearly synthetic sequence of system states yk;
2. Chronologically evaluate the adequacy of all system states within the sequence

yk and accumulate these results;
3. Calculate the yearly reliability indices F(yk) based on the values calculated

in step (2).
4- Update the expected values of the process reliability indices E{F) based on

indices calculated in step (3);
5. If the accuracy of the estimates of the process indices is acceptable, terminate

the process. Otherwise, return to step (1).

The yearly synthetic sequence is generated by combining the components
states transition processes and the chronological load model variation in the same
time basis. The component states transition process is obtained by sequentially
sampling the probability distribution of the component states duration, which
may follows an exponential or any other distribution. This technique is called
State Duration Sampling Approach.

2.1 State Duration Sampling Approach

This sampling process is based on the probability distribution of the compo-
nent states duration. The chronological component state transition processes for
all components are first simulated by sampling. The chronological system state
transition process is then created by combination of the chronological component
state transition process [1]. This approach is detailed in the algorithm below for
the case of exponential probability distribution for the component state duration:

1008-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

1. Specify the initial state of the system by the combination of the initial state
of all components;

2. Sample the duration of each component residing in its present state (tj by:

U = -—\nUi (3)

where A; is the transition rate of the component and Ui is a uniformly dis-
tributed random number between [0,1].

3. Repeat step (2) for the whole period (year) and record sampling values of
each state duration for all components.

4- Create the chronological system state transition process by combining the
chronological component state transition processes obtained in step (3) for
all components. This combination is done considering that a new system
state is reached when at least one component changes its state.

This approach is illustrated in Fig. 1 for a system composed of two compo-
nents represented by two-state stochastic model.

up

down

up

down

1 up 2 up

1 down 2 up

1 up 2 down

1 down 2 down

time

Component 1

Component 2

time

System

time

Fig. 1. State Duration Sampling

3 Parallel Methodology

One possible approach to parallelise the problem described above is to have a
complete year analysed on a single processor and the many years necessary to

1009-

FEUP - Faculdade de Engenharia da Universidade do Porto

converge the process analysed in parallel on different processors. This implies
that the parallel processing grain is one year simulation. However, this approach
does not scale well with the number of processors and the number of simulated
year for convergence [6].

A more scalable approach to parallelise the problem is to analyse each year in
parallel by allocating parts of one year simulation to different processors. Since
within a yearly synthetic sequence the adequacy analysis of the system operating
states should be chronologically performed, this parallelisation strategy requires
a careful analysis of the problem and more a complex solution.

The generation of the yearly synthetic sequence is a strictly sequential pro-
cess, since each state depends on the previous one. However, most of the compu-
tation time is not spend in the sequence generation itself, but in the simulation of
the system adequacy at each state that compounds the sequence. In that sense,
if all processors sample the same synthetic sequence, the adequacy analysis of
parts of this sequence can be allocated to different processors and performed in
parallel. Of course some extra care must be taken in order to group the partial
results of these sub-sequences and calculate the yearly reliability indices.

In the methodology used in this paper, the whole synthetic sequence is di-
vided in as many sub-sequences as the number of scheduled processors, the last
processor getting the remainder if the division is not exact. Each processor is
then responsible for analysing the states within a particular sub-sequence. In a
master-slave model, at the end of each sub-sequence analysis, the slaves send to
the master their partial results and start the simulation of another sub-sequence
in the next year. The master is responsible for combining all these sub-sequence
results sequentially in time and compounding a complete year simulation. Since
this methodology is asynchronous, the master has to keep track of which year
does a sub-sequence result it receives is related to and accumulate the results at
the right year. Each time it detects that a year has been completely analysed, it
calculates the yearly reliability indices and verifies the convergence of the pro-
cess. When convergence is achieved, the master sends a message to all slaves to
stop the simulation, calculates the process reliability indices, generates reports
and terminates execution.

The methodology precedence graph is shown in Fig. 2. Each processor has a
rank in the parallel computation which varies from 0 to {p-1), 0 referring to the
master process. The basic tasks involved are: I - Initialisation, A - Sub-sequence
States Analysis, R - Reception and Control of Sub-sequences, C - Convergence
Control, S - Individual States Analysis and F - Finalisation. A superindex k,i
associated with a task means it is relative to the i-th sub-sequence within year k
and a superindex k,i,j means it is relative to the j-th state within sub-sequence
i in year k.

Since sequential MCS simulates a chronological evolutionary process, a sys-
tem state configuration is dependent on the topological evolution of the previous
states. The adequacy analysis of a state will determine if it is an up or down
state and adequate procedures must be taken, depending on the kind of tran-
sition that lead to that state (up-up, up-down, down-up, down-down). In order

- 1010-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Q1.1,j+1...n

I S11,...S1'1' R 1 C1 R A2'1 R C2 F
->* ►**• ** >?►• >?»• M ►• >

p0 (master)

A1.i / A2.i A3.i S4.i.1...j

-* ►* M 4 H

Pi (slave)

Fig. 2. Precedence Graph

to identify the transition that occurs between sub-sequences analysed in parallel
on different processors, the last state of each sub-sequence is analysed on two
processors: the one responsible for that sub-sequence and the one responsible
for the next sub-sequence. This allows the knowledge if the first state of a sub-
sequence comes from an up or down state, permitting that the proper action be
taken. This solution is illustrated in Fig. 3 for 4 processors.

Pi

Y^fYUJXTnr^
_Sub-sequences

alocated to
procs

P2 P3 <-

Yk

States
analyzed
by procs

Fig. 3. Consecutive Sub-Sequences Transition

A very important problem that must be treated in the division of a syn-
thetic sequence in sub-sequences to be analysed in parallel is if this border
coincides with a failure sub-sequence of the whole synthetic sequence. A fail-
ure sub-sequence is a sequence of failure states, which corresponds to an energy
supply interruption of duration equal to the sum of the individual failure state
duration. If this coincidence occurs and is not properly treated, the duration
related indices and their distribution along the months are wrongly evaluated
because the failure sub-sequence is not completely detected and evaluated at
the same processor. To solve this problem, the methodology makes a failure sub-
sequence to be completely evaluated at the processor on which the first failure
state of the sub-sequence occurs, as illustrated in Fig. 4.

1011

FEUP - Faculdade de Engenharia da Universidade do Porto

p 0 ^
1

Pi p2 p3

I

\p\ I
I 1_

i
l
i

failure sub-sequence

Fig. 4. Failure Sub-sequences Treatment

If the last state of a processor allocated sub-sequence is a failure state, what
means that the simulation is within a failure sub-sequence, that processor carries
on analysing the next states until a success state is reached, ensuring that the
whole failure was analysed on it. In a similar way, if the state before the first
of a sub-sequence allocated to a processor is a failure state, that processor skips
all states until a success state is reached and starts to accumulate the results
from this state on. This guarantees the correctness of the duration related in-
dices evaluation and distribution but adds some computation overhead cost to
the overall simulation. However, some extra costs must usually be added when
parallelising any sequentially constrained application.

4 Results

This work was implemented on three different multicomputer platforms.

1. A scalable distributed memory parallel computer IBM RS/6000 SP com-
posed of 10 POWER2 processors interconnected by a high performance
switch of 40 MBps full-duplex bandwidth and 50 /isec latency;

2. A network of workstations (NOW) composed of 8 IBM RS/6000 43P work-
stations interconnected by an Ethernet (10Base-T) network. The peak band-
width of this network is 10 Mbps unidirectional;

3. A PC cluster composed of 8 Pentium III 500MHz personal microcomputers
interconnected by a Fast-Ethernet (100 Base-T) network via a 12 ports 100
Mbps switch. Each PC has 128 MB RAM and 6.0 GB IDE UDMA hard disk.
The peak bandwidth and latency of the network is 100 Mbps unidirectional
and 500 ^sec, respectively. The operating system running over the network
is Windows NT 4.0.

The message passing system used on the first and second platforms is the
MPI implementation developed by IBM for the AIX operating system. On the
PC cluster it is used the WMPI vl.2 [7], which is a freeware MPI implementa-
tion developed at the Coimbra University, Portugal, for Win32 platforms. It is

1012-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

based on MPICH 1.1.2 and uses the ch-p4 device developed at Argonne National
Laboratory (ANL) [8]. The implementations used on the three platforms comply
with MPI standard version 1.1 [9].

Three different electric systems were used as test to verify the performance
and scalability of the parallel implementations. The first one is a representation
of the New Brunswick power system (NBS) proposed by CIGRE as a standard
for reliability evaluations [10]. This system has 89 nodes, 126 circuits and 4
control areas. The second and third systems are representations of the Brazilian
power system, with actual electric characteristics and dimensions, for Southern
region (BSO) and Southeastern region (BSE), respectively. These systems have
660 buses, 1072 circuits and 78 generators and 1389 buses, 2295 circuits and
259 generators, respectively. A convergence tolerance of 5% in the coefficient of
variation of the EPNS index was adopted in all simulations.

The parallel efficiency obtained on 4, 6 and 10 processors of the IBM RS/6000
SP parallel computer for the test systems, together with the CPU time of the
mono-processor execution, are summarised on Table 1.

Table 1. RS/6000 SP Results

System CPU time Efficiency (%)
p=l p=4 P=6 p=10

NBS 30.17 min 97.32 94.64 84.62
BSO 13.02 min 93.57 93.27 82.23
BSE 15.30 hour 97.81 97.41 91.20

The application of the parallel methodology produces significant reduction
of the simulation time required for reliability evaluation using sequential MCS.
The efficiencies are very good staying beyond 82% for all test systems on 10
nodes. The methodology is scalable with the number of simulated years required
for convergence, which varies from 13 years for the BSO system to 356 for the
NBS system, and also with the number of allocated processors.

The parallel efficiency obtained on 4, 6 and 8 workstations of the NOW and
the CPU execution time on one workstation are summarised on Table 2.

Table 2. NOW Results

System CPU time Efficiency (%)
p=l p=4 p=6 p=8

NBS 14.43 min 87.96 80.21 73.11
BSO 6.18 min 87.26 72.29 65.36
BSE 7.08 hour 92.90 91.57 90.60

1013-

FEUP - Faculdade de Engenharia da Universidade do Porto

The analysis of the efficiency achieved on the NOW shows the higher commu-
nication cost of an Ethernet network in comparison with the high performance
switch of the RS/6000 SP. Most of the communication time at this platform
is spent by the initial broadcast of the problem data and this is a consequence
of two characteristics: first, the smaller bandwidth of this network and second,
the fact that the MPI broadcast is a blocking directive, implemented as a se-
quence of point-to-point communications. In an Ethernet bar network topology
this costs more than in a multinode interconnected switch. The scalability can
also be considered good especially for the larger system.

The parallel efficiency obtained on 4 and 8 PCs of the cluster and the CPU
execution time on one single PC are summarised on Table 3.

Table 3. PC Cluster Results

System CPU time Efficiency (%)
p=l p=4 p=6 p=8

NBS 5.37 min 88.79 85.33 81.80
BSO 2.06 min 92.37 85.22 75.28
BSE 2.28 hour 98.64 98.11 96.25

The results achieved on this platform can be considered excellent, specially
if taken into consideration the low cost, easiness of use and high availability of
the computing environment. The sequential simulation time is already smaller
than in the other platforms as a consequence of the more modern and powerful
processor used. The efficiency of the parallel solution can be considered very good
reaching more then 96% for the larger and more time consuming test system on
8 PCs. The parallel results show higher efficiency than the NOW ones mostly
due to the higher bandwidth of the network and the use of a 100 Mbps switch
in a star topology. As a consequence, the scalability of the methodology is less
affected by the increase in the number of processor.

The speedup curves of the parallel methodology are shown on Figures 5, 6
and 7 for the RS/6000 SP, NOW and PC Cluster platforms, respectively.

5 Conclusions

The power system composite reliability evaluation using the sequential MCS ap-
proach simulates a realisation of the stochastic process of the system operation.
Power supply interruption duration and probability distribution of duration re-
lated indices can be calculated, what is not possible using the non-sequential
MCS approach. These issues are fundamental in production cost studies that
are receiving more and more attention on the new competitive environment of
power system markets. However, the major drawback of sequential MCS appli-
cation is the high elapsed computation time required on conventional platforms

1014-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

No or Processors

Fig. 5. RS/6000 SP Speedup Curve

No. 01 Processors

Fig. 6. NOW Speedup Curve

No. 01 Processors

Fig. 7. PC Cluster Speedup Curve

1015-

FELSP - Faculdade de Engenharia da Universidade do Porto

for elevated dimension system models. This paper presented a parallel method-
ology for solving this problem, implemented on three different multicomputer
platforms. The good results obtained in this work show that the computational
cost paid by the parallelisation of a sequentially constrained problem are fairly
compensated by the overall reduction of the simulation time. Even in the cases
where the efficiency are not that high, the engineer production time saved by
the use of the parallel methodology justifies it use. Moreover, the use of low cost
platforms like a NOW or a cluster of PCs, which are usually available at any
scientific institution and at most electric utilities, aggregate a new appeal to the
adoption of parallel processing as a reliable and economic computing environ-
ment.

References

1. R. Billinton and W. Li, Reliability Assessment of Electric Power Systems Using
Monte Carlo Methods, Plenum Press, New York, 1994.

2. M.V.F. Pereira and N.J. Balu, "Composite Generation / Transmission Reliability
Evaluation", Proceedings of the IEEE, vol. 80, no. 4, pp. 470-491, April 1992.

3. R. Billinton, A. Jonnavithula, "Application of Sequential Monte Carlo Simulation
to Evaluation of Distributions of Composite System Indices", IEE Proceedings -
Generation, Transmission and Distribution, vol. 144, no. 2, pp. 87-90, March 1997.

4. D.M. Falcäo, "High Performance Computing in Power System Applications", Lec-
ture Notes in Computer Science, Springer-Verlag, vol. 1215, pp. 1-23, February
1997.

5. C.L.T. Borges and D.M. Falcäo, "A Parallelisation Strategy for Power Systems
Composite Reliability Evaluation (Best Student Paper Award: Honourable Men-
tion)", Lecture Notes in Computer Science, Springer-Verlag, vol. 1573, pp. 640-651,
1999.

6. C.L.T. Borges, "Power Systems Composite Reliability Evaluation on Paral-
lel and Distributed Processing Environments", PhD Thesis, in Portuguese,
COPPE/UFRJ, Brazil, December 1998.

7. J.M. Marinho, "WMPI vl.2", http://dsg.dei.uc.pt/wmpi, Coimbra University, Por-
tugal.

8. R. Butler, E. Lusk, "User's Guide to the p4 Parallel Programming System", ANL-
92/17, Mathematics and Computer Science Division, Argonne National Labora-
tory, October 1992.

9. M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra,"MPI: The Com-
plete Reference", The MIT Press, Cambrige, Massachusetts, 1996.

10. CIGRE Task Force 38-03-10, "Power System Reliability Analysis - Volume 2 -
Composite Power Reliability Evaluation", 1992.

1016-

